Spaces:
Paused
Paused
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet). | |
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned | |
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss. | |
""" | |
import logging | |
import math | |
import os | |
from dataclasses import dataclass, field | |
from glob import glob | |
from typing import Optional | |
from torch.utils.data import ConcatDataset | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
MODEL_WITH_LM_HEAD_MAPPING, | |
AutoConfig, | |
AutoModelWithLMHead, | |
AutoTokenizer, | |
DataCollatorForLanguageModeling, | |
DataCollatorForPermutationLanguageModeling, | |
DataCollatorForWholeWordMask, | |
HfArgumentParser, | |
LineByLineTextDataset, | |
LineByLineWithRefDataset, | |
PreTrainedTokenizer, | |
TextDataset, | |
Trainer, | |
TrainingArguments, | |
set_seed, | |
) | |
from transformers.trainer_utils import is_main_process | |
logger = logging.getLogger(__name__) | |
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The model checkpoint for weights initialization. Leave None if you want to train a model from" | |
" scratch." | |
) | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
train_data_file: Optional[str] = field( | |
default=None, metadata={"help": "The input training data file (a text file)."} | |
) | |
train_data_files: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The input training data files (multiple files in glob format). " | |
"Very often splitting large files to smaller files can prevent tokenizer going out of memory" | |
) | |
}, | |
) | |
eval_data_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
train_ref_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input train ref data file for whole word mask in Chinese."}, | |
) | |
eval_ref_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."}, | |
) | |
line_by_line: bool = field( | |
default=False, | |
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, | |
) | |
mlm: bool = field( | |
default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} | |
) | |
whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."}) | |
mlm_probability: float = field( | |
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} | |
) | |
plm_probability: float = field( | |
default=1 / 6, | |
metadata={ | |
"help": ( | |
"Ratio of length of a span of masked tokens to surrounding context length for permutation language" | |
" modeling." | |
) | |
}, | |
) | |
max_span_length: int = field( | |
default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} | |
) | |
block_size: int = field( | |
default=-1, | |
metadata={ | |
"help": ( | |
"Optional input sequence length after tokenization." | |
"The training dataset will be truncated in block of this size for training." | |
"Default to the model max input length for single sentence inputs (take into account special tokens)." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
def get_dataset( | |
args: DataTrainingArguments, | |
tokenizer: PreTrainedTokenizer, | |
evaluate: bool = False, | |
cache_dir: Optional[str] = None, | |
): | |
def _dataset(file_path, ref_path=None): | |
if args.line_by_line: | |
if ref_path is not None: | |
if not args.whole_word_mask or not args.mlm: | |
raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask") | |
return LineByLineWithRefDataset( | |
tokenizer=tokenizer, | |
file_path=file_path, | |
block_size=args.block_size, | |
ref_path=ref_path, | |
) | |
return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size) | |
else: | |
return TextDataset( | |
tokenizer=tokenizer, | |
file_path=file_path, | |
block_size=args.block_size, | |
overwrite_cache=args.overwrite_cache, | |
cache_dir=cache_dir, | |
) | |
if evaluate: | |
return _dataset(args.eval_data_file, args.eval_ref_file) | |
elif args.train_data_files: | |
return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)]) | |
else: | |
return _dataset(args.train_data_file, args.train_ref_file) | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if data_args.eval_data_file is None and training_args.do_eval: | |
raise ValueError( | |
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " | |
"or remove the --do_eval argument." | |
) | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" | |
" --overwrite_output_dir to overcome." | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
training_args.local_rank, | |
training_args.device, | |
training_args.n_gpu, | |
bool(training_args.local_rank != -1), | |
training_args.fp16, | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(training_args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
logger.info("Training/evaluation parameters %s", training_args) | |
# Set seed | |
set_seed(training_args.seed) | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
if model_args.config_name: | |
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
if model_args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir) | |
elif model_args.model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) | |
else: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" | |
" script, save it,and load it from here, using --tokenizer_name" | |
) | |
if model_args.model_name_or_path: | |
model = AutoModelWithLMHead.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
) | |
else: | |
logger.info("Training new model from scratch") | |
model = AutoModelWithLMHead.from_config(config) | |
model.resize_token_embeddings(len(tokenizer)) | |
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: | |
raise ValueError( | |
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" | |
"--mlm flag (masked language modeling)." | |
) | |
if data_args.block_size <= 0: | |
data_args.block_size = tokenizer.max_len | |
# Our input block size will be the max possible for the model | |
else: | |
data_args.block_size = min(data_args.block_size, tokenizer.max_len) | |
# Get datasets | |
train_dataset = ( | |
get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None | |
) | |
eval_dataset = ( | |
get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir) | |
if training_args.do_eval | |
else None | |
) | |
if config.model_type == "xlnet": | |
data_collator = DataCollatorForPermutationLanguageModeling( | |
tokenizer=tokenizer, | |
plm_probability=data_args.plm_probability, | |
max_span_length=data_args.max_span_length, | |
) | |
else: | |
if data_args.mlm and data_args.whole_word_mask: | |
data_collator = DataCollatorForWholeWordMask( | |
tokenizer=tokenizer, mlm_probability=data_args.mlm_probability | |
) | |
else: | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability | |
) | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
prediction_loss_only=True, | |
) | |
# Training | |
if training_args.do_train: | |
model_path = ( | |
model_args.model_name_or_path | |
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) | |
else None | |
) | |
trainer.train(model_path=model_path) | |
trainer.save_model() | |
# For convenience, we also re-save the tokenizer to the same directory, | |
# so that you can share your model easily on huggingface.co/models =) | |
if trainer.is_world_master(): | |
tokenizer.save_pretrained(training_args.output_dir) | |
# Evaluation | |
results = {} | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
eval_output = trainer.evaluate() | |
perplexity = math.exp(eval_output["eval_loss"]) | |
result = {"perplexity": perplexity} | |
output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt") | |
if trainer.is_world_master(): | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results *****") | |
for key in sorted(result.keys()): | |
logger.info(" %s = %s", key, str(result[key])) | |
writer.write("%s = %s\n" % (key, str(result[key]))) | |
results.update(result) | |
return results | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |