ahassoun's picture
Upload 3018 files
ee6e328
raw
history blame
4.28 kB
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Utils to train DistilBERT
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def git_log(folder_path: str):
"""
Log commit info.
"""
repo = git.Repo(search_parent_directories=True)
repo_infos = {
"repo_id": str(repo),
"repo_sha": str(repo.head.object.hexsha),
"repo_branch": str(repo.active_branch),
}
with open(os.path.join(folder_path, "git_log.json"), "w") as f:
json.dump(repo_infos, f, indent=4)
def init_gpu_params(params):
"""
Handle single and multi-GPU / multi-node.
"""
if params.n_gpu <= 0:
params.local_rank = 0
params.master_port = -1
params.is_master = True
params.multi_gpu = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs")
if params.n_gpu > 1:
assert params.local_rank != -1
params.world_size = int(os.environ["WORLD_SIZE"])
params.n_gpu_per_node = int(os.environ["N_GPU_NODE"])
params.global_rank = int(os.environ["RANK"])
# number of nodes / node ID
params.n_nodes = params.world_size // params.n_gpu_per_node
params.node_id = params.global_rank // params.n_gpu_per_node
params.multi_gpu = True
assert params.n_nodes == int(os.environ["N_NODES"])
assert params.node_id == int(os.environ["NODE_RANK"])
# local job (single GPU)
else:
assert params.local_rank == -1
params.n_nodes = 1
params.node_id = 0
params.local_rank = 0
params.global_rank = 0
params.world_size = 1
params.n_gpu_per_node = 1
params.multi_gpu = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
params.is_master = params.node_id == 0 and params.local_rank == 0
params.multi_node = params.n_nodes > 1
# summary
PREFIX = f"--- Global rank: {params.global_rank} - "
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes)
logger.info(PREFIX + "Node ID : %i" % params.node_id)
logger.info(PREFIX + "Local rank : %i" % params.local_rank)
logger.info(PREFIX + "World size : %i" % params.world_size)
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node)
logger.info(PREFIX + "Master : %s" % str(params.is_master))
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node))
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu))
logger.info(PREFIX + "Hostname : %s" % socket.gethostname())
# set GPU device
torch.cuda.set_device(params.local_rank)
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed")
torch.distributed.init_process_group(
init_method="env://",
backend="nccl",
)
def set_seed(args):
"""
Set the random seed.
"""
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)