ahassoun's picture
Upload 3018 files
ee6e328
raw
history blame
No virus
73.7 kB
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
Adapted From Facebook Inc, Detectron2 && Huggingface Co.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import itertools
import math
import os
from abc import ABCMeta, abstractmethod
from collections import OrderedDict, namedtuple
from typing import Dict, List, Tuple
import numpy as np
import torch
from torch import nn
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops import RoIPool
from torchvision.ops.boxes import batched_nms, nms
from utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint
# other:
def norm_box(boxes, raw_sizes):
if not isinstance(boxes, torch.Tensor):
normalized_boxes = boxes.copy()
else:
normalized_boxes = boxes.clone()
normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1]
normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0]
return normalized_boxes
def pad_list_tensors(
list_tensors,
preds_per_image,
max_detections=None,
return_tensors=None,
padding=None,
pad_value=0,
location=None,
):
"""
location will always be cpu for np tensors
"""
if location is None:
location = "cpu"
assert return_tensors in {"pt", "np", None}
assert padding in {"max_detections", "max_batch", None}
new = []
if padding is None:
if return_tensors is None:
return list_tensors
elif return_tensors == "pt":
if not isinstance(list_tensors, torch.Tensor):
return torch.stack(list_tensors).to(location)
else:
return list_tensors.to(location)
else:
if not isinstance(list_tensors, list):
return np.array(list_tensors.to(location))
else:
return list_tensors.to(location)
if padding == "max_detections":
assert max_detections is not None, "specify max number of detections per batch"
elif padding == "max_batch":
max_detections = max(preds_per_image)
for i in range(len(list_tensors)):
too_small = False
tensor_i = list_tensors.pop(0)
if tensor_i.ndim < 2:
too_small = True
tensor_i = tensor_i.unsqueeze(-1)
assert isinstance(tensor_i, torch.Tensor)
tensor_i = nn.functional.pad(
input=tensor_i,
pad=(0, 0, 0, max_detections - preds_per_image[i]),
mode="constant",
value=pad_value,
)
if too_small:
tensor_i = tensor_i.squeeze(-1)
if return_tensors is None:
if location == "cpu":
tensor_i = tensor_i.cpu()
tensor_i = tensor_i.tolist()
if return_tensors == "np":
if location == "cpu":
tensor_i = tensor_i.cpu()
tensor_i = tensor_i.numpy()
else:
if location == "cpu":
tensor_i = tensor_i.cpu()
new.append(tensor_i)
if return_tensors == "np":
return np.stack(new, axis=0)
elif return_tensors == "pt" and not isinstance(new, torch.Tensor):
return torch.stack(new, dim=0)
else:
return list_tensors
def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd):
scores = scores[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // 4
# Convert to Boxes to use the `clip` function ...
boxes = boxes.reshape(-1, 4)
_clip_box(boxes, image_shape)
boxes = boxes.view(-1, num_bbox_reg_classes, 4) # R x C x 4
# Select max scores
max_scores, max_classes = scores.max(1) # R x C --> R
num_objs = boxes.size(0)
boxes = boxes.view(-1, 4)
idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes
max_boxes = boxes[idxs] # Select max boxes according to the max scores.
# Apply NMS
keep = nms(max_boxes, max_scores, nms_thresh)
keep = keep[:maxd]
if keep.shape[-1] >= mind and keep.shape[-1] <= maxd:
max_boxes, max_scores = max_boxes[keep], max_scores[keep]
classes = max_classes[keep]
return max_boxes, max_scores, classes, keep
else:
return None
# Helper Functions
def _clip_box(tensor, box_size: Tuple[int, int]):
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
h, w = box_size
tensor[:, 0].clamp_(min=0, max=w)
tensor[:, 1].clamp_(min=0, max=h)
tensor[:, 2].clamp_(min=0, max=w)
tensor[:, 3].clamp_(min=0, max=h)
def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor:
widths = box[:, 2] - box[:, 0]
heights = box[:, 3] - box[:, 1]
keep = (widths > threshold) & (heights > threshold)
return keep
def get_norm(norm, out_channels):
if isinstance(norm, str):
if len(norm) == 0:
return None
norm = {
"BN": BatchNorm2d,
"GN": lambda channels: nn.GroupNorm(32, channels),
"nnSyncBN": nn.SyncBatchNorm, # keep for debugging
"": lambda x: x,
}[norm]
return norm(out_channels)
def _create_grid_offsets(size: List[int], stride: int, offset: float, device):
grid_height, grid_width = size
shifts_x = torch.arange(
offset * stride,
grid_width * stride,
step=stride,
dtype=torch.float32,
device=device,
)
shifts_y = torch.arange(
offset * stride,
grid_height * stride,
step=stride,
dtype=torch.float32,
device=device,
)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
return shift_x, shift_y
def build_backbone(cfg):
input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))
norm = cfg.RESNETS.NORM
stem = BasicStem(
in_channels=input_shape.channels,
out_channels=cfg.RESNETS.STEM_OUT_CHANNELS,
norm=norm,
caffe_maxpool=cfg.MODEL.MAX_POOL,
)
freeze_at = cfg.BACKBONE.FREEZE_AT
if freeze_at >= 1:
for p in stem.parameters():
p.requires_grad = False
out_features = cfg.RESNETS.OUT_FEATURES
depth = cfg.RESNETS.DEPTH
num_groups = cfg.RESNETS.NUM_GROUPS
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group
in_channels = cfg.RESNETS.STEM_OUT_CHANNELS
out_channels = cfg.RESNETS.RES2_OUT_CHANNELS
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
res5_dilation = cfg.RESNETS.RES5_DILATION
assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
stages = []
out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
max_stage_idx = max(out_stage_idx)
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
dilation = res5_dilation if stage_idx == 5 else 1
first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
stage_kargs = {
"num_blocks": num_blocks_per_stage[idx],
"first_stride": first_stride,
"in_channels": in_channels,
"bottleneck_channels": bottleneck_channels,
"out_channels": out_channels,
"num_groups": num_groups,
"norm": norm,
"stride_in_1x1": stride_in_1x1,
"dilation": dilation,
}
stage_kargs["block_class"] = BottleneckBlock
blocks = ResNet.make_stage(**stage_kargs)
in_channels = out_channels
out_channels *= 2
bottleneck_channels *= 2
if freeze_at >= stage_idx:
for block in blocks:
block.freeze()
stages.append(blocks)
return ResNet(stem, stages, out_features=out_features)
def find_top_rpn_proposals(
proposals,
pred_objectness_logits,
images,
image_sizes,
nms_thresh,
pre_nms_topk,
post_nms_topk,
min_box_side_len,
training,
):
"""Args:
proposals (list[Tensor]): (L, N, Hi*Wi*A, 4).
pred_objectness_logits: tensors of length L.
nms_thresh (float): IoU threshold to use for NMS
pre_nms_topk (int): before nms
post_nms_topk (int): after nms
min_box_side_len (float): minimum proposal box side
training (bool): True if proposals are to be used in training,
Returns:
results (List[Dict]): stores post_nms_topk object proposals for image i.
"""
num_images = len(images)
device = proposals[0].device
# 1. Select top-k anchor for every level and every image
topk_scores = [] # #lvl Tensor, each of shape N x topk
topk_proposals = []
level_ids = [] # #lvl Tensor, each of shape (topk,)
batch_idx = torch.arange(num_images, device=device)
for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits):
Hi_Wi_A = logits_i.shape[1]
num_proposals_i = min(pre_nms_topk, Hi_Wi_A)
# sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812)
# topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)
logits_i, idx = logits_i.sort(descending=True, dim=1)
topk_scores_i = logits_i[batch_idx, :num_proposals_i]
topk_idx = idx[batch_idx, :num_proposals_i]
# each is N x topk
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4
topk_proposals.append(topk_proposals_i)
topk_scores.append(topk_scores_i)
level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device))
# 2. Concat all levels together
topk_scores = torch.cat(topk_scores, dim=1)
topk_proposals = torch.cat(topk_proposals, dim=1)
level_ids = torch.cat(level_ids, dim=0)
# if I change to batched_nms, I wonder if this will make a difference
# 3. For each image, run a per-level NMS, and choose topk results.
results = []
for n, image_size in enumerate(image_sizes):
boxes = topk_proposals[n]
scores_per_img = topk_scores[n]
# I will have to take a look at the boxes clip method
_clip_box(boxes, image_size)
# filter empty boxes
keep = _nonempty_boxes(boxes, threshold=min_box_side_len)
lvl = level_ids
if keep.sum().item() != len(boxes):
boxes, scores_per_img, lvl = (
boxes[keep],
scores_per_img[keep],
level_ids[keep],
)
keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh)
keep = keep[:post_nms_topk]
res = (boxes[keep], scores_per_img[keep])
results.append(res)
# I wonder if it would be possible for me to pad all these things.
return results
def subsample_labels(labels, num_samples, positive_fraction, bg_label):
"""
Returns:
pos_idx, neg_idx (Tensor):
1D vector of indices. The total length of both is `num_samples` or fewer.
"""
positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1)
negative = torch.nonzero(labels == bg_label).squeeze(1)
num_pos = int(num_samples * positive_fraction)
# protect against not enough positive examples
num_pos = min(positive.numel(), num_pos)
num_neg = num_samples - num_pos
# protect against not enough negative examples
num_neg = min(negative.numel(), num_neg)
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx = positive[perm1]
neg_idx = negative[perm2]
return pos_idx, neg_idx
def add_ground_truth_to_proposals(gt_boxes, proposals):
raise NotImplementedError()
def add_ground_truth_to_proposals_single_image(gt_boxes, proposals):
raise NotImplementedError()
def _fmt_box_list(box_tensor, batch_index: int):
repeated_index = torch.full(
(len(box_tensor), 1),
batch_index,
dtype=box_tensor.dtype,
device=box_tensor.device,
)
return torch.cat((repeated_index, box_tensor), dim=1)
def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]):
pooler_fmt_boxes = torch.cat(
[_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)],
dim=0,
)
return pooler_fmt_boxes
def assign_boxes_to_levels(
box_lists: List[torch.Tensor],
min_level: int,
max_level: int,
canonical_box_size: int,
canonical_level: int,
):
box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists]))
# Eqn.(1) in FPN paper
level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8))
# clamp level to (min, max), in case the box size is too large or too small
# for the available feature maps
level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level)
return level_assignments.to(torch.int64) - min_level
# Helper Classes
class _NewEmptyTensorOp(torch.autograd.Function):
@staticmethod
def forward(ctx, x, new_shape):
ctx.shape = x.shape
return x.new_empty(new_shape)
@staticmethod
def backward(ctx, grad):
shape = ctx.shape
return _NewEmptyTensorOp.apply(grad, shape), None
class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])):
def __new__(cls, *, channels=None, height=None, width=None, stride=None):
return super().__new__(cls, channels, height, width, stride)
class Box2BoxTransform(object):
"""
This R-CNN transformation scales the box's width and height
by exp(dw), exp(dh) and shifts a box's center by the offset
(dx * width, dy * height).
"""
def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None):
"""
Args:
weights (4-element tuple): Scaling factors that are applied to the
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
such that the deltas have unit variance; now they are treated as
hyperparameters of the system.
scale_clamp (float): When predicting deltas, the predicted box scaling
factors (dw and dh) are clamped such that they are <= scale_clamp.
"""
self.weights = weights
if scale_clamp is not None:
self.scale_clamp = scale_clamp
else:
"""
Value for clamping large dw and dh predictions.
The heuristic is that we clamp such that dw and dh are no larger
than what would transform a 16px box into a 1000px box
(based on a small anchor, 16px, and a typical image size, 1000px).
"""
self.scale_clamp = math.log(1000.0 / 16)
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
any delta is too large and is clamped).
Args:
src_boxes (Tensor): source boxes, e.g., object proposals
target_boxes (Tensor): target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
wx, wy, ww, wh = self.weights
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
dw = ww * torch.log(target_widths / src_widths)
dh = wh * torch.log(target_heights / src_heights)
deltas = torch.stack((dx, dy, dw, dh), dim=1)
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
return pred_boxes
class Matcher(object):
"""
This class assigns to each predicted "element" (e.g., a box) a ground-truth
element. Each predicted element will have exactly zero or one matches; each
ground-truth element may be matched to zero or more predicted elements.
The matching is determined by the MxN match_quality_matrix, that characterizes
how well each (ground-truth, prediction)-pair match each other. For example,
if the elements are boxes, this matrix may contain box intersection-over-union
overlap values.
The matcher returns (a) a vector of length N containing the index of the
ground-truth element m in [0, M) that matches to prediction n in [0, N).
(b) a vector of length N containing the labels for each prediction.
"""
def __init__(
self,
thresholds: List[float],
labels: List[int],
allow_low_quality_matches: bool = False,
):
"""
Args:
thresholds (list): a list of thresholds used to stratify predictions
into levels.
labels (list): a list of values to label predictions belonging at
each level. A label can be one of {-1, 0, 1} signifying
{ignore, negative class, positive class}, respectively.
allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold.
For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and
thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and
thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives.
"""
thresholds = thresholds[:]
assert thresholds[0] > 0
thresholds.insert(0, -float("inf"))
thresholds.append(float("inf"))
assert all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:]))
assert all(label_i in [-1, 0, 1] for label_i in labels)
assert len(labels) == len(thresholds) - 1
self.thresholds = thresholds
self.labels = labels
self.allow_low_quality_matches = allow_low_quality_matches
def __call__(self, match_quality_matrix):
"""
Args:
match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted
elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`).
Returns:
matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M)
match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored
"""
assert match_quality_matrix.dim() == 2
if match_quality_matrix.numel() == 0:
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
# When no gt boxes exist, we define IOU = 0 and therefore set labels
# to `self.labels[0]`, which usually defaults to background class 0
# To choose to ignore instead,
# can make labels=[-1,0,-1,1] + set appropriate thresholds
default_match_labels = match_quality_matrix.new_full(
(match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
)
return default_matches, default_match_labels
assert torch.all(match_quality_matrix >= 0)
# match_quality_matrix is M (gt) x N (predicted)
# Max over gt elements (dim 0) to find best gt candidate for each prediction
matched_vals, matches = match_quality_matrix.max(dim=0)
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
low_high = (matched_vals >= low) & (matched_vals < high)
match_labels[low_high] = l
if self.allow_low_quality_matches:
self.set_low_quality_matches_(match_labels, match_quality_matrix)
return matches, match_labels
def set_low_quality_matches_(self, match_labels, match_quality_matrix):
"""
Produce additional matches for predictions that have only low-quality matches.
Specifically, for each ground-truth G find the set of predictions that have
maximum overlap with it (including ties); for each prediction in that set, if
it is unmatched, then match it to the ground-truth G.
This function implements the RPN assignment case (i)
in Sec. 3.1.2 of Faster R-CNN.
"""
# For each gt, find the prediction with which it has highest quality
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
# Find the highest quality match available, even if it is low, including ties.
# Note that the matches qualities must be positive due to the use of
# `torch.nonzero`.
of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None]
if of_quality_inds.dim() == 0:
(_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1)
else:
(_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1)
match_labels[pred_inds_with_highest_quality] = 1
class RPNOutputs(object):
def __init__(
self,
box2box_transform,
anchor_matcher,
batch_size_per_image,
positive_fraction,
images,
pred_objectness_logits,
pred_anchor_deltas,
anchors,
boundary_threshold=0,
gt_boxes=None,
smooth_l1_beta=0.0,
):
"""
Args:
box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations.
anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels.
batch_size_per_image (int): number of proposals to sample when training
positive_fraction (float): target fraction of sampled proposals that should be positive
images (ImageList): :class:`ImageList` instance representing N input images
pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W)
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi)
anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l
boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training.
gt_boxes (list[Boxes], optional): A list of N elements.
smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored
"""
self.box2box_transform = box2box_transform
self.anchor_matcher = anchor_matcher
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
self.pred_objectness_logits = pred_objectness_logits
self.pred_anchor_deltas = pred_anchor_deltas
self.anchors = anchors
self.gt_boxes = gt_boxes
self.num_feature_maps = len(pred_objectness_logits)
self.num_images = len(images)
self.boundary_threshold = boundary_threshold
self.smooth_l1_beta = smooth_l1_beta
def _get_ground_truth(self):
raise NotImplementedError()
def predict_proposals(self):
# pred_anchor_deltas: (L, N, ? Hi, Wi)
# anchors:(N, L, -1, B)
# here we loop over specific feature map, NOT images
proposals = []
anchors = self.anchors.transpose(0, 1)
for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas):
B = anchors_i.size(-1)
N, _, Hi, Wi = pred_anchor_deltas_i.shape
anchors_i = anchors_i.flatten(start_dim=0, end_dim=1)
pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B)
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
# Append feature map proposals with shape (N, Hi*Wi*A, B)
proposals.append(proposals_i.view(N, -1, B))
proposals = torch.stack(proposals)
return proposals
def predict_objectness_logits(self):
"""
Returns:
pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A).
"""
pred_objectness_logits = [
# Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).reshape(self.num_images, -1)
for score in self.pred_objectness_logits
]
return pred_objectness_logits
# Main Classes
class Conv2d(nn.Conv2d):
def __init__(self, *args, **kwargs):
norm = kwargs.pop("norm", None)
activation = kwargs.pop("activation", None)
super().__init__(*args, **kwargs)
self.norm = norm
self.activation = activation
def forward(self, x):
if x.numel() == 0 and self.training:
assert not isinstance(self.norm, nn.SyncBatchNorm)
if x.numel() == 0:
assert not isinstance(self.norm, nn.GroupNorm)
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // s + 1
for i, p, di, k, s in zip(
x.shape[-2:],
self.padding,
self.dilation,
self.kernel_size,
self.stride,
)
]
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
empty = _NewEmptyTensorOp.apply(x, output_shape)
if self.training:
_dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + _dummy
else:
return empty
x = super().forward(x)
if self.norm is not None:
x = self.norm(x)
if self.activation is not None:
x = self.activation(x)
return x
class LastLevelMaxPool(nn.Module):
"""
This module is used in the original FPN to generate a downsampled P6 feature from P5.
"""
def __init__(self):
super().__init__()
self.num_levels = 1
self.in_feature = "p5"
def forward(self, x):
return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)]
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature.
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.num_levels = 2
self.in_feature = "res5"
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(nn.functional.relu(p6))
return [p6, p7]
class BasicStem(nn.Module):
def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False):
super().__init__()
self.conv1 = Conv2d(
in_channels,
out_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False,
norm=get_norm(norm, out_channels),
)
self.caffe_maxpool = caffe_maxpool
# use pad 1 instead of pad zero
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu_(x)
if self.caffe_maxpool:
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True)
else:
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1)
return x
@property
def out_channels(self):
return self.conv1.out_channels
@property
def stride(self):
return 4 # = stride 2 conv -> stride 2 max pool
class ResNetBlockBase(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
def freeze(self):
for p in self.parameters():
p.requires_grad = False
return self
class BottleneckBlock(ResNetBlockBase):
def __init__(
self,
in_channels,
out_channels,
bottleneck_channels,
stride=1,
num_groups=1,
norm="BN",
stride_in_1x1=False,
dilation=1,
):
super().__init__(in_channels, out_channels, stride)
if in_channels != out_channels:
self.shortcut = Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False,
norm=get_norm(norm, out_channels),
)
else:
self.shortcut = None
# The original MSRA ResNet models have stride in the first 1x1 conv
# The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
# stride in the 3x3 conv
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
self.conv1 = Conv2d(
in_channels,
bottleneck_channels,
kernel_size=1,
stride=stride_1x1,
bias=False,
norm=get_norm(norm, bottleneck_channels),
)
self.conv2 = Conv2d(
bottleneck_channels,
bottleneck_channels,
kernel_size=3,
stride=stride_3x3,
padding=1 * dilation,
bias=False,
groups=num_groups,
dilation=dilation,
norm=get_norm(norm, bottleneck_channels),
)
self.conv3 = Conv2d(
bottleneck_channels,
out_channels,
kernel_size=1,
bias=False,
norm=get_norm(norm, out_channels),
)
def forward(self, x):
out = self.conv1(x)
out = nn.functional.relu_(out)
out = self.conv2(out)
out = nn.functional.relu_(out)
out = self.conv3(out)
if self.shortcut is not None:
shortcut = self.shortcut(x)
else:
shortcut = x
out += shortcut
out = nn.functional.relu_(out)
return out
class Backbone(nn.Module, metaclass=ABCMeta):
def __init__(self):
super().__init__()
@abstractmethod
def forward(self):
pass
@property
def size_divisibility(self):
"""
Some backbones require the input height and width to be divisible by a specific integer. This is
typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match
dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required.
"""
return 0
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name],
stride=self._out_feature_strides[name],
)
for name in self._out_features
}
@property
def out_features(self):
"""deprecated"""
return self._out_features
@property
def out_feature_strides(self):
"""deprecated"""
return {f: self._out_feature_strides[f] for f in self._out_features}
@property
def out_feature_channels(self):
"""deprecated"""
return {f: self._out_feature_channels[f] for f in self._out_features}
class ResNet(Backbone):
def __init__(self, stem, stages, num_classes=None, out_features=None):
"""
Args:
stem (nn.Module): a stem module
stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`.
num_classes (None or int): if None, will not perform classification.
out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in:
"stem", "linear", or "res2" ... If None, will return the output of the last layer.
"""
super(ResNet, self).__init__()
self.stem = stem
self.num_classes = num_classes
current_stride = self.stem.stride
self._out_feature_strides = {"stem": current_stride}
self._out_feature_channels = {"stem": self.stem.out_channels}
self.stages_and_names = []
for i, blocks in enumerate(stages):
for block in blocks:
assert isinstance(block, ResNetBlockBase), block
curr_channels = block.out_channels
stage = nn.Sequential(*blocks)
name = "res" + str(i + 2)
self.add_module(name, stage)
self.stages_and_names.append((stage, name))
self._out_feature_strides[name] = current_stride = int(
current_stride * np.prod([k.stride for k in blocks])
)
self._out_feature_channels[name] = blocks[-1].out_channels
if num_classes is not None:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.linear = nn.Linear(curr_channels, num_classes)
# Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
# "The 1000-way fully-connected layer is initialized by
# drawing weights from a zero-mean Gaussian with std of 0.01."
nn.init.normal_(self.linear.weight, stddev=0.01)
name = "linear"
if out_features is None:
out_features = [name]
self._out_features = out_features
assert len(self._out_features)
children = [x[0] for x in self.named_children()]
for out_feature in self._out_features:
assert out_feature in children, "Available children: {}".format(", ".join(children))
def forward(self, x):
outputs = {}
x = self.stem(x)
if "stem" in self._out_features:
outputs["stem"] = x
for stage, name in self.stages_and_names:
x = stage(x)
if name in self._out_features:
outputs[name] = x
if self.num_classes is not None:
x = self.avgpool(x)
x = self.linear(x)
if "linear" in self._out_features:
outputs["linear"] = x
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name],
stride=self._out_feature_strides[name],
)
for name in self._out_features
}
@staticmethod
def make_stage(
block_class,
num_blocks,
first_stride=None,
*,
in_channels,
out_channels,
**kwargs,
):
"""
Usually, layers that produce the same feature map spatial size
are defined as one "stage".
Under such definition, stride_per_block[1:] should all be 1.
"""
if first_stride is not None:
assert "stride" not in kwargs and "stride_per_block" not in kwargs
kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1)
blocks = []
for i in range(num_blocks):
curr_kwargs = {}
for k, v in kwargs.items():
if k.endswith("_per_block"):
assert (
len(v) == num_blocks
), f"Argument '{k}' of make_stage should have the same length as num_blocks={num_blocks}."
newk = k[: -len("_per_block")]
assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
curr_kwargs[newk] = v[i]
else:
curr_kwargs[k] = v
blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs))
in_channels = out_channels
return blocks
class ROIPooler(nn.Module):
"""
Region of interest feature map pooler that supports pooling from one or more
feature maps.
"""
def __init__(
self,
output_size,
scales,
sampling_ratio,
canonical_box_size=224,
canonical_level=4,
):
super().__init__()
# assumption that stride is a power of 2.
min_level = -math.log2(scales[0])
max_level = -math.log2(scales[-1])
# a bunch of testing
assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level))
assert len(scales) == max_level - min_level + 1, "not pyramid"
assert 0 < min_level and min_level <= max_level
if isinstance(output_size, int):
output_size = (output_size, output_size)
assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int)
if len(scales) > 1:
assert min_level <= canonical_level and canonical_level <= max_level
assert canonical_box_size > 0
self.output_size = output_size
self.min_level = int(min_level)
self.max_level = int(max_level)
self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales)
self.canonical_level = canonical_level
self.canonical_box_size = canonical_box_size
def forward(self, feature_maps, boxes):
"""
Args:
feature_maps: List[torch.Tensor(N,C,W,H)]
box_lists: list[torch.Tensor])
Returns:
A tensor of shape(N*B, Channels, output_size, output_size)
"""
x = list(feature_maps.values())
num_level_assignments = len(self.level_poolers)
assert len(x) == num_level_assignments and len(boxes) == x[0].size(0)
pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes)
if num_level_assignments == 1:
return self.level_poolers[0](x[0], pooler_fmt_boxes)
level_assignments = assign_boxes_to_levels(
boxes,
self.min_level,
self.max_level,
self.canonical_box_size,
self.canonical_level,
)
num_boxes = len(pooler_fmt_boxes)
num_channels = x[0].shape[1]
output_size = self.output_size[0]
dtype, device = x[0].dtype, x[0].device
output = torch.zeros(
(num_boxes, num_channels, output_size, output_size),
dtype=dtype,
device=device,
)
for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)):
inds = torch.nonzero(level_assignments == level).squeeze(1)
pooler_fmt_boxes_level = pooler_fmt_boxes[inds]
output[inds] = pooler(x_level, pooler_fmt_boxes_level)
return output
class ROIOutputs(object):
def __init__(self, cfg, training=False):
self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA
self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS)
self.training = training
self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST
self.min_detections = cfg.MIN_DETECTIONS
self.max_detections = cfg.MAX_DETECTIONS
nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST
if not isinstance(nms_thresh, list):
nms_thresh = [nms_thresh]
self.nms_thresh = nms_thresh
def _predict_boxes(self, proposals, box_deltas, preds_per_image):
num_pred = box_deltas.size(0)
B = proposals[0].size(-1)
K = box_deltas.size(-1) // B
box_deltas = box_deltas.view(num_pred * K, B)
proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B)
proposals = proposals.reshape(-1, B)
boxes = self.box2box_transform.apply_deltas(box_deltas, proposals)
return boxes.view(num_pred, K * B).split(preds_per_image, dim=0)
def _predict_objs(self, obj_logits, preds_per_image):
probs = nn.functional.softmax(obj_logits, dim=-1)
probs = probs.split(preds_per_image, dim=0)
return probs
def _predict_attrs(self, attr_logits, preds_per_image):
attr_logits = attr_logits[..., :-1].softmax(-1)
attr_probs, attrs = attr_logits.max(-1)
return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0)
@torch.no_grad()
def inference(
self,
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=None,
):
# only the pred boxes is the
preds_per_image = [p.size(0) for p in pred_boxes]
boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image)
obj_scores_all = self._predict_objs(obj_logits, preds_per_image) # list of length N
attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image)
features = features.split(preds_per_image, dim=0)
# fun for each image too, also I can experiment and do multiple images
final_results = []
zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes)
for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped):
for nms_t in self.nms_thresh:
outputs = do_nms(
boxes,
obj_scores,
size,
self.score_thresh,
nms_t,
self.min_detections,
self.max_detections,
)
if outputs is not None:
max_boxes, max_scores, classes, ids = outputs
break
if scales is not None:
scale_yx = scales[i]
max_boxes[:, 0::2] *= scale_yx[1]
max_boxes[:, 1::2] *= scale_yx[0]
final_results.append(
(
max_boxes,
classes,
max_scores,
attrs[ids],
attr_probs[ids],
features[i][ids],
)
)
boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results))
return boxes, classes, class_probs, attrs, attr_probs, roi_features
def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes):
pass
def __call__(
self,
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=None,
):
if self.training:
raise NotImplementedError()
return self.inference(
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=scales,
)
class Res5ROIHeads(nn.Module):
"""
ROIHeads perform all per-region computation in an R-CNN.
It contains logic of cropping the regions, extract per-region features
(by the res-5 block in this case), and make per-region predictions.
"""
def __init__(self, cfg, input_shape):
super().__init__()
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION
self.in_features = cfg.ROI_HEADS.IN_FEATURES
self.num_classes = cfg.ROI_HEADS.NUM_CLASSES
self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT
self.feature_strides = {k: v.stride for k, v in input_shape.items()}
self.feature_channels = {k: v.channels for k, v in input_shape.items()}
self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG
self.stage_channel_factor = 2**3 # res5 is 8x res2
self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor
# self.proposal_matcher = Matcher(
# cfg.ROI_HEADS.IOU_THRESHOLDS,
# cfg.ROI_HEADS.IOU_LABELS,
# allow_low_quality_matches=False,
# )
pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],)
sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE
use_attr = cfg.ROI_BOX_HEAD.ATTR
num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS
self.pooler = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
)
self.res5 = self._build_res5_block(cfg)
if not res5_halve:
"""
Modifications for VG in RoI heads:
1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1
2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2)
"""
self.res5[0].conv1.stride = (1, 1)
self.res5[0].shortcut.stride = (1, 1)
for i in range(3):
self.res5[i].conv2.padding = (2, 2)
self.res5[i].conv2.dilation = (2, 2)
self.box_predictor = FastRCNNOutputLayers(
self.out_channels,
self.num_classes,
self.cls_agnostic_bbox_reg,
use_attr=use_attr,
num_attrs=num_attrs,
)
def _build_res5_block(self, cfg):
stage_channel_factor = self.stage_channel_factor # res5 is 8x res2
num_groups = cfg.RESNETS.NUM_GROUPS
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group * stage_channel_factor
out_channels = self.out_channels
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
norm = cfg.RESNETS.NORM
blocks = ResNet.make_stage(
BottleneckBlock,
3,
first_stride=2,
in_channels=out_channels // 2,
bottleneck_channels=bottleneck_channels,
out_channels=out_channels,
num_groups=num_groups,
norm=norm,
stride_in_1x1=stride_in_1x1,
)
return nn.Sequential(*blocks)
def _shared_roi_transform(self, features, boxes):
x = self.pooler(features, boxes)
return self.res5(x)
def forward(self, features, proposal_boxes, gt_boxes=None):
if self.training:
"""
see https://github.com/airsplay/py-bottom-up-attention/\
blob/master/detectron2/modeling/roi_heads/roi_heads.py
"""
raise NotImplementedError()
assert not proposal_boxes[0].requires_grad
box_features = self._shared_roi_transform(features, proposal_boxes)
feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1
obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled)
return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled
class AnchorGenerator(nn.Module):
"""
For a set of image sizes and feature maps, computes a set of anchors.
"""
def __init__(self, cfg, input_shape: List[ShapeSpec]):
super().__init__()
sizes = cfg.ANCHOR_GENERATOR.SIZES
aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS
self.strides = [x.stride for x in input_shape]
self.offset = cfg.ANCHOR_GENERATOR.OFFSET
assert 0.0 <= self.offset < 1.0, self.offset
"""
sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i
1. given in absolute lengths in units of the input image;
2. they do not dynamically scale if the input image size changes.
aspect_ratios (list[list[float]])
strides (list[int]): stride of each input feature.
"""
self.num_features = len(self.strides)
self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios))
self._spacial_feat_dim = 4
def _calculate_anchors(self, sizes, aspect_ratios):
# If one size (or aspect ratio) is specified and there are multiple feature
# maps, then we "broadcast" anchors of that single size (or aspect ratio)
if len(sizes) == 1:
sizes *= self.num_features
if len(aspect_ratios) == 1:
aspect_ratios *= self.num_features
assert self.num_features == len(sizes)
assert self.num_features == len(aspect_ratios)
cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)]
return cell_anchors
@property
def box_dim(self):
return self._spacial_feat_dim
@property
def num_cell_anchors(self):
"""
Returns:
list[int]: Each int is the number of anchors at every pixel location, on that feature map.
"""
return [len(cell_anchors) for cell_anchors in self.cell_anchors]
def grid_anchors(self, grid_sizes):
anchors = []
for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors):
shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device)
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))
return anchors
def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)):
"""
anchors are continuous geometric rectangles
centered on one feature map point sample.
We can later build the set of anchors
for the entire feature map by tiling these tensors
"""
anchors = []
for size in sizes:
area = size**2.0
for aspect_ratio in aspect_ratios:
w = math.sqrt(area / aspect_ratio)
h = aspect_ratio * w
x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
anchors.append([x0, y0, x1, y1])
return nn.Parameter(torch.tensor(anchors))
def forward(self, features):
"""
Args:
features List[torch.Tensor]: list of feature maps on which to generate anchors.
Returns:
torch.Tensor: a list of #image elements.
"""
num_images = features[0].size(0)
grid_sizes = [feature_map.shape[-2:] for feature_map in features]
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps)
return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0)
class RPNHead(nn.Module):
"""
RPN classification and regression heads. Uses a 3x3 conv to produce a shared
hidden state from which one 1x1 conv predicts objectness logits for each anchor
and a second 1x1 conv predicts bounding-box deltas specifying how to deform
each anchor into an object proposal.
"""
def __init__(self, cfg, input_shape: List[ShapeSpec]):
super().__init__()
# Standard RPN is shared across levels:
in_channels = [s.channels for s in input_shape]
assert len(set(in_channels)) == 1, "Each level must have the same channel!"
in_channels = in_channels[0]
anchor_generator = AnchorGenerator(cfg, input_shape)
num_cell_anchors = anchor_generator.num_cell_anchors
box_dim = anchor_generator.box_dim
assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors"
num_cell_anchors = num_cell_anchors[0]
if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1:
hid_channels = in_channels
else:
hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS
# Modifications for VG in RPN (modeling/proposal_generator/rpn.py)
# Use hidden dim instead fo the same dim as Res4 (in_channels)
# 3x3 conv for the hidden representation
self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1)
# 1x1 conv for predicting objectness logits
self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1)
# 1x1 conv for predicting box2box transform deltas
self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1)
for layer in [self.conv, self.objectness_logits, self.anchor_deltas]:
nn.init.normal_(layer.weight, std=0.01)
nn.init.constant_(layer.bias, 0)
def forward(self, features):
"""
Args:
features (list[Tensor]): list of feature maps
"""
pred_objectness_logits = []
pred_anchor_deltas = []
for x in features:
t = nn.functional.relu(self.conv(x))
pred_objectness_logits.append(self.objectness_logits(t))
pred_anchor_deltas.append(self.anchor_deltas(t))
return pred_objectness_logits, pred_anchor_deltas
class RPN(nn.Module):
"""
Region Proposal Network, introduced by the Faster R-CNN paper.
"""
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
super().__init__()
self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE
self.in_features = cfg.RPN.IN_FEATURES
self.nms_thresh = cfg.RPN.NMS_THRESH
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
self.positive_fraction = cfg.RPN.POSITIVE_FRACTION
self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA
self.loss_weight = cfg.RPN.LOSS_WEIGHT
self.pre_nms_topk = {
True: cfg.RPN.PRE_NMS_TOPK_TRAIN,
False: cfg.RPN.PRE_NMS_TOPK_TEST,
}
self.post_nms_topk = {
True: cfg.RPN.POST_NMS_TOPK_TRAIN,
False: cfg.RPN.POST_NMS_TOPK_TEST,
}
self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH
self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features])
self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS)
self.anchor_matcher = Matcher(
cfg.RPN.IOU_THRESHOLDS,
cfg.RPN.IOU_LABELS,
allow_low_quality_matches=True,
)
self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features])
def training(self, images, image_shapes, features, gt_boxes):
pass
def inference(self, outputs, images, image_shapes, features, gt_boxes=None):
outputs = find_top_rpn_proposals(
outputs.predict_proposals(),
outputs.predict_objectness_logits(),
images,
image_shapes,
self.nms_thresh,
self.pre_nms_topk[self.training],
self.post_nms_topk[self.training],
self.min_box_side_len,
self.training,
)
results = []
for img in outputs:
im_boxes, img_box_logits = img
img_box_logits, inds = img_box_logits.sort(descending=True)
im_boxes = im_boxes[inds]
results.append((im_boxes, img_box_logits))
(proposal_boxes, logits) = tuple(map(list, zip(*results)))
return proposal_boxes, logits
def forward(self, images, image_shapes, features, gt_boxes=None):
"""
Args:
images (torch.Tensor): input images of length `N`
features (dict[str: Tensor])
gt_instances
"""
# features is dict, key = block level, v = feature_map
features = [features[f] for f in self.in_features]
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
anchors = self.anchor_generator(features)
outputs = RPNOutputs(
self.box2box_transform,
self.anchor_matcher,
self.batch_size_per_image,
self.positive_fraction,
images,
pred_objectness_logits,
pred_anchor_deltas,
anchors,
self.boundary_threshold,
gt_boxes,
self.smooth_l1_beta,
)
# For RPN-only models, the proposals are the final output
if self.training:
raise NotImplementedError()
return self.training(outputs, images, image_shapes, features, gt_boxes)
else:
return self.inference(outputs, images, image_shapes, features, gt_boxes)
class FastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(
self,
input_size,
num_classes,
cls_agnostic_bbox_reg,
box_dim=4,
use_attr=False,
num_attrs=-1,
):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int)
cls_agnostic_bbox_reg (bool)
box_dim (int)
"""
super().__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
# (do + 1 for background class)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
self.use_attr = use_attr
if use_attr:
"""
Modifications for VG in RoI heads
Embedding: {num_classes + 1} --> {input_size // 8}
Linear: {input_size + input_size // 8} --> {input_size // 4}
Linear: {input_size // 4} --> {num_attrs + 1}
"""
self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8)
self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4)
self.attr_score = nn.Linear(input_size // 4, num_attrs + 1)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for item in [self.cls_score, self.bbox_pred]:
nn.init.constant_(item.bias, 0)
def forward(self, roi_features):
if roi_features.dim() > 2:
roi_features = torch.flatten(roi_features, start_dim=1)
scores = self.cls_score(roi_features)
proposal_deltas = self.bbox_pred(roi_features)
if self.use_attr:
_, max_class = scores.max(-1) # [b, c] --> [b]
cls_emb = self.cls_embedding(max_class) # [b] --> [b, 256]
roi_features = torch.cat([roi_features, cls_emb], -1) # [b, 2048] + [b, 256] --> [b, 2304]
roi_features = self.fc_attr(roi_features)
roi_features = nn.functional.relu(roi_features)
attr_scores = self.attr_score(roi_features)
return scores, attr_scores, proposal_deltas
else:
return scores, proposal_deltas
class GeneralizedRCNN(nn.Module):
def __init__(self, cfg):
super().__init__()
self.device = torch.device(cfg.MODEL.DEVICE)
self.backbone = build_backbone(cfg)
self.proposal_generator = RPN(cfg, self.backbone.output_shape())
self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape())
self.roi_outputs = ROIOutputs(cfg)
self.to(self.device)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
from_tf = kwargs.pop("from_tf", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_cdn = kwargs.pop("use_cdn", True)
# Load config if we don't provide a configuration
if not isinstance(config, Config):
config_path = config if config is not None else pretrained_model_name_or_path
# try:
config = Config.from_pretrained(
config_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
)
# Load model
if pretrained_model_name_or_path is not None:
if os.path.isdir(pretrained_model_name_or_path):
if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
else:
raise EnvironmentError(
"Error no file named {} found in directory {} ".format(
WEIGHTS_NAME,
pretrained_model_name_or_path,
)
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert (
from_tf
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index"
)
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
use_cdn=use_cdn,
)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
if resolved_archive_file is None:
raise EnvironmentError
except EnvironmentError:
msg = f"Can't load weights for '{pretrained_model_name_or_path}'."
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
print("loading weights file {}".format(archive_file))
else:
print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
else:
resolved_archive_file = None
# Instantiate model.
model = cls(config)
if state_dict is None:
try:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu")
except Exception:
state_dict = load_checkpoint(resolved_archive_file)
except Exception:
raise OSError(
"Unable to load weights from pytorch checkpoint file. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
)
missing_keys = []
unexpected_keys = []
error_msgs = []
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
model_to_load = model
model_to_load.load_state_dict(state_dict)
if model.__class__.__name__ != model_to_load.__class__.__name__:
base_model_state_dict = model_to_load.state_dict().keys()
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
if len(unexpected_keys) > 0:
print(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
" with another architecture (e.g. initializing a BertForSequenceClassification model from a"
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
print(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
else:
print(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
" training."
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
return model
def forward(
self,
images,
image_shapes,
gt_boxes=None,
proposals=None,
scales_yx=None,
**kwargs,
):
"""
kwargs:
max_detections (int), return_tensors {"np", "pt", None}, padding {None,
"max_detections"}, pad_value (int), location = {"cuda", "cpu"}
"""
if self.training:
raise NotImplementedError()
return self.inference(
images=images,
image_shapes=image_shapes,
gt_boxes=gt_boxes,
proposals=proposals,
scales_yx=scales_yx,
**kwargs,
)
@torch.no_grad()
def inference(
self,
images,
image_shapes,
gt_boxes=None,
proposals=None,
scales_yx=None,
**kwargs,
):
# run images through backbone
original_sizes = image_shapes * scales_yx
features = self.backbone(images)
# generate proposals if none are available
if proposals is None:
proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes)
else:
assert proposals is not None
# pool object features from either gt_boxes, or from proposals
obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes)
# prepare FRCNN Outputs and select top proposals
boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs(
obj_logits=obj_logits,
attr_logits=attr_logits,
box_deltas=box_deltas,
pred_boxes=proposal_boxes,
features=feature_pooled,
sizes=image_shapes,
scales=scales_yx,
)
# will we pad???
subset_kwargs = {
"max_detections": kwargs.get("max_detections", None),
"return_tensors": kwargs.get("return_tensors", None),
"pad_value": kwargs.get("pad_value", 0),
"padding": kwargs.get("padding", None),
}
preds_per_image = torch.tensor([p.size(0) for p in boxes])
boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs)
classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs)
class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs)
attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs)
attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs)
roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs)
subset_kwargs["padding"] = None
preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs)
sizes = pad_list_tensors(image_shapes, None, **subset_kwargs)
normalized_boxes = norm_box(boxes, original_sizes)
return OrderedDict(
{
"obj_ids": classes,
"obj_probs": class_probs,
"attr_ids": attrs,
"attr_probs": attr_probs,
"boxes": boxes,
"sizes": sizes,
"preds_per_image": preds_per_image,
"roi_features": roi_features,
"normalized_boxes": normalized_boxes,
}
)