ahassoun's picture
Upload 3018 files
ee6e328
raw
history blame
29.2 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning (m)LUKE model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library 🤗
without using a Trainer.
"""
import argparse
import logging
import math
import os
import random
from pathlib import Path
import datasets
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs
from datasets import ClassLabel, load_dataset, load_metric
from huggingface_hub import Repository, create_repo
from luke_utils import DataCollatorForLukeTokenClassification, is_punctuation, padding_tensor
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
AdamW,
LukeConfig,
LukeForEntitySpanClassification,
LukeTokenizer,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
def parse_args():
parser = argparse.ArgumentParser(
description="Finetune (m)LUKE on a token classification task (such as NER) with the accelerate library"
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--text_column_name",
type=str,
default=None,
help="The column name of text to input in the file (a csv or JSON file).",
)
parser.add_argument(
"--label_column_name",
type=str,
default=None,
help="The column name of label to input in the file (a csv or JSON file).",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--max_entity_length",
type=int,
default=32,
help=(
"The maximum total input entity length after tokenization (Used only for (M)Luke models). Sequences longer"
" than this will be truncated, sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--max_mention_length",
type=int,
default=30,
help=(
"The maximum total input mention length after tokenization (Used only for (M)Luke models). Sequences"
" longer than this will be truncated, sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--label_all_tokens",
action="store_true",
help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.",
)
parser.add_argument(
"--return_entity_level_metrics",
action="store_true",
help="Indication whether entity level metrics are to be returner.",
)
parser.add_argument(
"--task_name",
type=str,
default="ner",
choices=["ner", "pos", "chunk"],
help="The name of the task.",
)
parser.add_argument(
"--debug",
action="store_true",
help="Activate debug mode and run training only with a subset of data.",
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
handler = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[handler])
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
# 'tokens' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# Trim a number of training examples
if args.debug:
for split in raw_datasets.keys():
raw_datasets[split] = raw_datasets[split].select(range(100))
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
if raw_datasets["train"] is not None:
column_names = raw_datasets["train"].column_names
features = raw_datasets["train"].features
else:
column_names = raw_datasets["validation"].column_names
features = raw_datasets["validation"].features
if args.text_column_name is not None:
text_column_name = args.text_column_name
elif "tokens" in column_names:
text_column_name = "tokens"
else:
text_column_name = column_names[0]
if args.label_column_name is not None:
label_column_name = args.label_column_name
elif f"{args.task_name}_tags" in column_names:
label_column_name = f"{args.task_name}_tags"
else:
label_column_name = column_names[1]
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
else:
label_list = get_label_list(raw_datasets["train"][label_column_name])
num_labels = len(label_list)
# Map that sends B-Xxx label to its I-Xxx counterpart
b_to_i_label = []
for idx, label in enumerate(label_list):
if label.startswith("B-") and label.replace("B-", "I-") in label_list:
b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
else:
b_to_i_label.append(idx)
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = LukeConfig.from_pretrained(args.config_name, num_labels=num_labels)
elif args.model_name_or_path:
config = LukeConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels)
else:
logger.warning("You are instantiating a new config instance from scratch.")
tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
if not tokenizer_name_or_path:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
tokenizer = LukeTokenizer.from_pretrained(
tokenizer_name_or_path,
use_fast=False,
task="entity_span_classification",
max_entity_length=args.max_entity_length,
max_mention_length=args.max_mention_length,
)
if args.model_name_or_path:
model = LukeForEntitySpanClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = LukeForEntitySpanClassification.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
padding = "max_length" if args.pad_to_max_length else False
def compute_sentence_boundaries_for_luke(examples):
sentence_boundaries = []
for tokens in examples[text_column_name]:
sentence_boundaries.append([0, len(tokens)])
examples["sentence_boundaries"] = sentence_boundaries
return examples
def compute_entity_spans_for_luke(examples):
all_entity_spans = []
texts = []
all_labels_entity_spans = []
all_original_entity_spans = []
for labels, tokens, sentence_boundaries in zip(
examples[label_column_name], examples[text_column_name], examples["sentence_boundaries"]
):
subword_lengths = [len(tokenizer.tokenize(token)) for token in tokens]
total_subword_length = sum(subword_lengths)
_, context_end = sentence_boundaries
if total_subword_length > args.max_length - 2:
cur_length = sum(subword_lengths[:context_end])
idx = context_end - 1
while cur_length > args.max_length - 2:
cur_length -= subword_lengths[idx]
context_end -= 1
idx -= 1
text = ""
sentence_words = tokens[:context_end]
sentence_subword_lengths = subword_lengths[:context_end]
word_start_char_positions = []
word_end_char_positions = []
labels_positions = {}
for word, label in zip(sentence_words, labels):
if word[0] == "'" or (len(word) == 1 and is_punctuation(word)):
text = text.rstrip()
word_start_char_positions.append(len(text))
text += word
word_end_char_positions.append(len(text))
text += " "
labels_positions[(word_start_char_positions[-1], word_end_char_positions[-1])] = label
text = text.rstrip()
texts.append(text)
entity_spans = []
labels_entity_spans = []
original_entity_spans = []
for word_start in range(len(sentence_words)):
for word_end in range(word_start, len(sentence_words)):
if (
sum(sentence_subword_lengths[word_start:word_end]) <= tokenizer.max_mention_length
and len(entity_spans) < tokenizer.max_entity_length
):
entity_spans.append((word_start_char_positions[word_start], word_end_char_positions[word_end]))
original_entity_spans.append((word_start, word_end + 1))
if (
word_start_char_positions[word_start],
word_end_char_positions[word_end],
) in labels_positions:
labels_entity_spans.append(
labels_positions[
(word_start_char_positions[word_start], word_end_char_positions[word_end])
]
)
else:
labels_entity_spans.append(0)
all_entity_spans.append(entity_spans)
all_labels_entity_spans.append(labels_entity_spans)
all_original_entity_spans.append(original_entity_spans)
examples["entity_spans"] = all_entity_spans
examples["text"] = texts
examples["labels_entity_spans"] = all_labels_entity_spans
examples["original_entity_spans"] = all_original_entity_spans
return examples
def tokenize_and_align_labels(examples):
entity_spans = []
for v in examples["entity_spans"]:
entity_spans.append(list(map(tuple, v)))
tokenized_inputs = tokenizer(
examples["text"],
entity_spans=entity_spans,
max_length=args.max_length,
padding=padding,
truncation=True,
)
if padding == "max_length":
tokenized_inputs["labels"] = padding_tensor(
examples["labels_entity_spans"], -100, tokenizer.padding_side, tokenizer.max_entity_length
)
tokenized_inputs["original_entity_spans"] = padding_tensor(
examples["original_entity_spans"], (-1, -1), tokenizer.padding_side, tokenizer.max_entity_length
)
tokenized_inputs[label_column_name] = padding_tensor(
examples[label_column_name], -1, tokenizer.padding_side, tokenizer.max_entity_length
)
else:
tokenized_inputs["labels"] = [ex[: tokenizer.max_entity_length] for ex in examples["labels_entity_spans"]]
tokenized_inputs["original_entity_spans"] = [
ex[: tokenizer.max_entity_length] for ex in examples["original_entity_spans"]
]
tokenized_inputs[label_column_name] = [
ex[: tokenizer.max_entity_length] for ex in examples[label_column_name]
]
return tokenized_inputs
with accelerator.main_process_first():
raw_datasets = raw_datasets.map(
compute_sentence_boundaries_for_luke,
batched=True,
desc="Adding sentence boundaries",
)
raw_datasets = raw_datasets.map(
compute_entity_spans_for_luke,
batched=True,
desc="Adding sentence spans",
)
processed_raw_datasets = raw_datasets.map(
tokenize_and_align_labels,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_raw_datasets["train"]
eval_dataset = processed_raw_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorForLukeTokenClassification(
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Use the device given by the `accelerator` object.
device = accelerator.device
model.to(device)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Metrics
metric = load_metric("seqeval")
def get_luke_labels(outputs, ner_tags, original_entity_spans):
true_predictions = []
true_labels = []
for output, original_spans, tags in zip(outputs.logits, original_entity_spans, ner_tags):
true_tags = [val for val in tags if val != -1]
true_original_spans = [val for val in original_spans if val != (-1, -1)]
max_indices = torch.argmax(output, axis=1)
max_logits = torch.max(output, axis=1).values
predictions = []
for logit, index, span in zip(max_logits, max_indices, true_original_spans):
if index != 0:
predictions.append((logit, span, label_list[index]))
predicted_sequence = [label_list[0]] * len(true_tags)
for _, span, label in sorted(predictions, key=lambda o: o[0], reverse=True):
if all(o == label_list[0] for o in predicted_sequence[span[0] : span[1]]):
predicted_sequence[span[0]] = label
if span[1] - span[0] > 1:
predicted_sequence[span[0] + 1 : span[1]] = [label] * (span[1] - span[0] - 1)
true_predictions.append(predicted_sequence)
true_labels.append([label_list[tag_id] for tag_id in true_tags])
return true_predictions, true_labels
def compute_metrics():
results = metric.compute()
if args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
_ = batch.pop("original_entity_spans")
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
model.eval()
for step, batch in enumerate(eval_dataloader):
original_entity_spans = batch.pop("original_entity_spans")
with torch.no_grad():
outputs = model(**batch)
preds, refs = get_luke_labels(outputs, batch[label_column_name], original_entity_spans)
metric.add_batch(
predictions=preds,
references=refs,
) # predictions and preferences are expected to be a nested list of labels, not label_ids
eval_metric = compute_metrics()
accelerator.print(f"epoch {epoch}:", eval_metric)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
if __name__ == "__main__":
main()