Spaces:
Paused
Paused
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
SRC_DIR = os.path.join(os.path.dirname(__file__), "src") | |
sys.path.append(SRC_DIR) | |
from transformers import ( | |
AutoConfig, | |
AutoModel, | |
AutoModelForCausalLM, | |
AutoModelForMaskedLM, | |
AutoModelForQuestionAnswering, | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
add_start_docstrings, | |
) | |
dependencies = ["torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub"] | |
def config(*args, **kwargs): | |
r""" | |
# Using torch.hub ! | |
import torch | |
config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased') # Download configuration from huggingface.co and cache. | |
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` | |
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json') | |
config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attentions=True, foo=False) | |
assert config.output_attentions == True | |
config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True) | |
assert config.output_attentions == True | |
assert unused_kwargs == {'foo': False} | |
""" | |
return AutoConfig.from_pretrained(*args, **kwargs) | |
def tokenizer(*args, **kwargs): | |
r""" | |
# Using torch.hub ! | |
import torch | |
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'bert-base-uncased') # Download vocabulary from huggingface.co and cache. | |
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')` | |
""" | |
return AutoTokenizer.from_pretrained(*args, **kwargs) | |
def model(*args, **kwargs): | |
r""" | |
# Using torch.hub ! | |
import torch | |
model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased') # Download model and configuration from huggingface.co and cache. | |
model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased', output_attentions=True) # Update configuration during loading | |
assert model.config.output_attentions == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') | |
model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
return AutoModel.from_pretrained(*args, **kwargs) | |
def modelForCausalLM(*args, **kwargs): | |
r""" | |
# Using torch.hub ! | |
import torch | |
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'gpt2') # Download model and configuration from huggingface.co and cache. | |
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'gpt2', output_attentions=True) # Update configuration during loading | |
assert model.config.output_attentions == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_pretrained('./tf_model/gpt_tf_model_config.json') | |
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './tf_model/gpt_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
return AutoModelForCausalLM.from_pretrained(*args, **kwargs) | |
def modelForMaskedLM(*args, **kwargs): | |
r""" | |
# Using torch.hub ! | |
import torch | |
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'bert-base-uncased') # Download model and configuration from huggingface.co and cache. | |
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'bert-base-uncased', output_attentions=True) # Update configuration during loading | |
assert model.config.output_attentions == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') | |
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
return AutoModelForMaskedLM.from_pretrained(*args, **kwargs) | |
def modelForSequenceClassification(*args, **kwargs): | |
r""" | |
# Using torch.hub ! | |
import torch | |
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased') # Download model and configuration from huggingface.co and cache. | |
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attentions=True) # Update configuration during loading | |
assert model.config.output_attentions == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') | |
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
return AutoModelForSequenceClassification.from_pretrained(*args, **kwargs) | |
def modelForQuestionAnswering(*args, **kwargs): | |
r""" | |
# Using torch.hub ! | |
import torch | |
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased') # Download model and configuration from huggingface.co and cache. | |
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased', output_attentions=True) # Update configuration during loading | |
assert model.config.output_attentions == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') | |
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs) | |