Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from unittest.util import safe_repr | |
from transformers import AutoTokenizer, RwkvConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
RWKV_PRETRAINED_MODEL_ARCHIVE_LIST, | |
RwkvForCausalLM, | |
RwkvModel, | |
) | |
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 | |
else: | |
is_torch_greater_or_equal_than_2_0 = False | |
class RwkvModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=False, | |
use_input_mask=True, | |
use_labels=True, | |
use_mc_token_ids=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=2, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.use_mc_token_ids = use_mc_token_ids | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.bos_token_id = vocab_size - 1 | |
self.eos_token_id = vocab_size - 1 | |
self.pad_token_id = vocab_size - 1 | |
def get_large_model_config(self): | |
return RwkvConfig.from_pretrained("sgugger/rwkv-4-pile-7b") | |
def prepare_config_and_inputs( | |
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False | |
): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config( | |
gradient_checkpointing=gradient_checkpointing, | |
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, | |
reorder_and_upcast_attn=reorder_and_upcast_attn, | |
) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
None, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def get_config( | |
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False | |
): | |
return RwkvConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
intermediate_size=self.intermediate_size, | |
activation_function=self.hidden_act, | |
resid_pdrop=self.hidden_dropout_prob, | |
attn_pdrop=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
gradient_checkpointing=gradient_checkpointing, | |
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, | |
reorder_and_upcast_attn=reorder_and_upcast_attn, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.vocab_size = 300 | |
return config | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_rwkv_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
config.output_hidden_states = True | |
model = RwkvModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1) | |
def create_and_check_causl_lm(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = RwkvForCausalLM(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_state_equivalency(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = RwkvModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
outputs = model(input_ids) | |
output_whole = outputs.last_hidden_state | |
outputs = model(input_ids[:, :2]) | |
output_one = outputs.last_hidden_state | |
# Using the state computed on the first inputs, we will get the same output | |
outputs = model(input_ids[:, 2:], state=outputs.state) | |
output_two = outputs.last_hidden_state | |
self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5)) | |
def create_and_check_forward_and_backwards( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False | |
): | |
model = RwkvForCausalLM(config) | |
model.to(torch_device) | |
if gradient_checkpointing: | |
model.gradient_checkpointing_enable() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
result.loss.backward() | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids} | |
return config, inputs_dict | |
class RwkvModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (RwkvModel, RwkvForCausalLM) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": RwkvModel, "text-generation": RwkvForCausalLM} if is_torch_available() else {} | |
) | |
# all_generative_model_classes = (RwkvForCausalLM,) if is_torch_available() else () | |
fx_compatible = False | |
test_missing_keys = False | |
test_model_parallel = False | |
test_pruning = False | |
test_head_masking = False # Rwkv does not support head masking | |
def setUp(self): | |
self.model_tester = RwkvModelTester(self) | |
self.config_tester = ConfigTester( | |
self, config_class=RwkvConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"] | |
) | |
def assertInterval(self, member, container, msg=None): | |
r""" | |
Simple utility function to check if a member is inside an interval. | |
""" | |
if isinstance(member, torch.Tensor): | |
max_value, min_value = member.max().item(), member.min().item() | |
elif isinstance(member, list) or isinstance(member, tuple): | |
max_value, min_value = max(member), min(member) | |
if not isinstance(container, list): | |
raise TypeError("container should be a list or tuple") | |
elif len(container) != 2: | |
raise ValueError("container should have 2 elements") | |
expected_min, expected_max = container | |
is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max) | |
if not is_inside_interval: | |
standardMsg = "%s not found in %s" % (safe_repr(member), safe_repr(container)) | |
self.fail(self._formatMessage(msg, standardMsg)) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_rwkv_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_rwkv_model(*config_and_inputs) | |
def test_rwkv_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_causl_lm(*config_and_inputs) | |
def test_state_equivalency(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_state_equivalency(*config_and_inputs) | |
def test_initialization(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config=config) | |
for name, param in model.named_parameters(): | |
if "time_decay" in name: | |
if param.requires_grad: | |
self.assertTrue(param.data.max().item() == 3.0) | |
self.assertTrue(param.data.min().item() == -5.0) | |
elif "time_first" in name: | |
if param.requires_grad: | |
# check if it's a ones like | |
self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5)) | |
elif any(x in name for x in ["time_mix_key", "time_mix_receptance"]): | |
if param.requires_grad: | |
self.assertInterval( | |
param.data, | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
elif "time_mix_value" in name: | |
if param.requires_grad: | |
self.assertInterval( | |
param.data, | |
[0.0, 1.3], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def test_attention_outputs(self): | |
r""" | |
Overriding the test_attention_outputs test as the attention outputs of Rwkv are different from other models | |
it has a shape `batch_size, seq_len, hidden_size`. | |
""" | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
seq_len = getattr(self.model_tester, "seq_length", None) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
batch_size = inputs["input_ids"].shape[0] | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
batch_size = inputs["input_ids"].shape[0] | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[batch_size, seq_len, config.hidden_size], | |
) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
batch_size = inputs["input_ids"].shape[0] | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[batch_size, seq_len, config.hidden_size], | |
) | |
def test_model_from_pretrained(self): | |
for model_name in RWKV_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = RwkvModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class RWKVIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
self.model_id = "RWKV/rwkv-4-169m-pile" | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) | |
def test_simple_generate(self): | |
expected_output = "Hello my name is Jasmine and I am a newbie to the" | |
model = RwkvForCausalLM.from_pretrained(self.model_id).to(torch_device) | |
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device) | |
output = model.generate(input_ids, max_new_tokens=10) | |
output_sentence = self.tokenizer.decode(output[0].tolist()) | |
self.assertEqual(output_sentence, expected_output) | |
def test_simple_generate_bf16(self): | |
expected_output = "Hello my name is Jasmine and I am a newbie to the" | |
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device) | |
model = RwkvForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device) | |
output = model.generate(input_ids, max_new_tokens=10) | |
output_sentence = self.tokenizer.decode(output[0].tolist()) | |
self.assertEqual(output_sentence, expected_output) | |