|
import PIL |
|
from PIL import Image, ImageDraw ,ImageFont |
|
from matplotlib import pyplot as plt |
|
import torchvision.transforms as T |
|
import os |
|
import torch |
|
import yaml |
|
|
|
def show_torch_img(img): |
|
img = to_np_image(img) |
|
plt.imshow(img) |
|
plt.axis("off") |
|
|
|
def to_np_image(all_images): |
|
all_images = (all_images.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu().numpy()[0] |
|
return all_images |
|
|
|
def tensor_to_pil(tensor_imgs): |
|
if type(tensor_imgs) == list: |
|
tensor_imgs = torch.cat(tensor_imgs) |
|
tensor_imgs = (tensor_imgs / 2 + 0.5).clamp(0, 1) |
|
to_pil = T.ToPILImage() |
|
pil_imgs = [to_pil(img) for img in tensor_imgs] |
|
return pil_imgs |
|
|
|
def pil_to_tensor(pil_imgs): |
|
to_torch = T.ToTensor() |
|
if type(pil_imgs) == PIL.Image.Image: |
|
tensor_imgs = to_torch(pil_imgs).unsqueeze(0)*2-1 |
|
elif type(pil_imgs) == list: |
|
tensor_imgs = torch.cat([to_torch(pil_imgs).unsqueeze(0)*2-1 for img in pil_imgs]).to(device) |
|
else: |
|
raise Exception("Input need to be PIL.Image or list of PIL.Image") |
|
return tensor_imgs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_margin(pil_img, top = 0, right = 0, bottom = 0, |
|
left = 0, color = (255,255,255)): |
|
width, height = pil_img.size |
|
new_width = width + right + left |
|
new_height = height + top + bottom |
|
result = Image.new(pil_img.mode, (new_width, new_height), color) |
|
|
|
result.paste(pil_img, (left, top)) |
|
return result |
|
|
|
def image_grid(imgs, rows = 1, cols = None, |
|
size = None, |
|
titles = None, text_pos = (0, 0)): |
|
if type(imgs) == list and type(imgs[0]) == torch.Tensor: |
|
imgs = torch.cat(imgs) |
|
if type(imgs) == torch.Tensor: |
|
imgs = tensor_to_pil(imgs) |
|
|
|
if not size is None: |
|
imgs = [img.resize((size,size)) for img in imgs] |
|
if cols is None: |
|
cols = len(imgs) |
|
assert len(imgs) >= rows*cols |
|
|
|
top=20 |
|
w, h = imgs[0].size |
|
delta = 0 |
|
if len(imgs)> 1 and not imgs[1].size[1] == h: |
|
delta = top |
|
h = imgs[1].size[1] |
|
if not titles is None: |
|
font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeMono.ttf", |
|
size = 20, encoding="unic") |
|
h = top + h |
|
grid = Image.new('RGB', size=(cols*w, rows*h+delta)) |
|
for i, img in enumerate(imgs): |
|
|
|
if not titles is None: |
|
img = add_margin(img, top = top, bottom = 0,left=0) |
|
draw = ImageDraw.Draw(img) |
|
draw.text(text_pos, titles[i],(0,0,0), |
|
font = font) |
|
if not delta == 0 and i > 0: |
|
grid.paste(img, box=(i%cols*w, i//cols*h+delta)) |
|
else: |
|
grid.paste(img, box=(i%cols*w, i//cols*h)) |
|
|
|
return grid |
|
|
|
|
|
""" |
|
input_folder - dataset folder |
|
""" |
|
def load_dataset(input_folder): |
|
|
|
|
|
class_names = next(os.walk(input_folder))[1] |
|
class_names[:] = [d for d in class_names if not d[0] == '.'] |
|
file_names=[] |
|
for class_name in class_names: |
|
cur_path = os.path.join(input_folder, class_name) |
|
filenames = next(os.walk(cur_path), (None, None, []))[2] |
|
filenames = [f for f in filenames if not f[0] == '.'] |
|
file_names.append(filenames) |
|
return class_names, file_names |
|
|
|
|
|
def dataset_from_yaml(yaml_location): |
|
with open(yaml_location, 'r') as stream: |
|
data_loaded = yaml.safe_load(stream) |
|
|
|
return data_loaded |