Spaces:
Paused
Paused
| """ | |
| 文档处理和向量化模块 | |
| 负责文档加载、文本分块、向量化和向量数据库初始化 | |
| """ | |
| try: | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| except ImportError: | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.document_loaders import WebBaseLoader | |
| # 尝试导入 langchain_milvus,如果失败则回退到 langchain_community 并应用补丁 | |
| try: | |
| from langchain_milvus import MilvusVectorStore as Milvus | |
| print("✅ 使用 langchain-milvus (新版)") | |
| except ImportError: | |
| try: | |
| from langchain_community.vectorstores import Milvus | |
| print("⚠️ 使用 langchain_community.vectorstores.Milvus (旧版)") | |
| # Monkeypatch: 修复旧版 LangChain 对 Milvus Lite 本地文件路径的校验问题 | |
| # 旧版 _create_connection_alias 强制要求 URI 以 http/https 开头 | |
| def _patched_create_connection_alias(self, connection_args): | |
| uri = connection_args.get("uri") | |
| # 为本地文件生成唯一的 alias | |
| if uri: | |
| import hashlib | |
| return hashlib.md5(uri.encode()).hexdigest() | |
| return "default" | |
| # 应用补丁 | |
| Milvus._create_connection_alias = _patched_create_connection_alias | |
| print("🔧 已应用 Milvus Lite 路径校验补丁") | |
| except ImportError: | |
| pass | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.retrievers import BM25Retriever | |
| from config import ( | |
| KNOWLEDGE_BASE_URLS, | |
| CHUNK_SIZE, | |
| CHUNK_OVERLAP, | |
| COLLECTION_NAME, | |
| EMBEDDING_MODEL, | |
| # 混合检索配置 | |
| ENABLE_HYBRID_SEARCH, | |
| HYBRID_SEARCH_WEIGHTS, | |
| KEYWORD_SEARCH_K, | |
| BM25_K1, | |
| BM25_B, | |
| # 向量库配置 | |
| VECTOR_STORE_TYPE, | |
| MILVUS_HOST, | |
| MILVUS_PORT, | |
| MILVUS_USER, | |
| MILVUS_PASSWORD, | |
| MILVUS_URI, | |
| MILVUS_INDEX_TYPE, | |
| MILVUS_INDEX_PARAMS, | |
| MILVUS_SEARCH_PARAMS, | |
| # 查询扩展配置 | |
| ENABLE_QUERY_EXPANSION, | |
| QUERY_EXPANSION_MODEL, | |
| QUERY_EXPANSION_PROMPT, | |
| MAX_EXPANDED_QUERIES, | |
| # 多模态配置 | |
| ENABLE_MULTIMODAL, | |
| MULTIMODAL_IMAGE_MODEL, | |
| SUPPORTED_IMAGE_FORMATS, | |
| IMAGE_EMBEDDING_DIM, | |
| MULTIMODAL_WEIGHTS | |
| ) | |
| from reranker import create_reranker | |
| # 多模态支持相关导入 | |
| import base64 | |
| import io | |
| from PIL import Image | |
| import numpy as np | |
| from typing import List, Dict, Any, Optional, Union | |
| try: | |
| from langchain_core.documents import Document | |
| except ImportError: | |
| try: | |
| from langchain_core.documents import Document | |
| except ImportError: | |
| from langchain.schema import Document | |
| class CustomEnsembleRetriever: | |
| """自定义集成检索器,结合向量检索和BM25检索""" | |
| def __init__(self, retrievers, weights): | |
| self.retrievers = retrievers | |
| self.weights = weights | |
| def invoke(self, query): | |
| """执行检索并合并结果""" | |
| # 获取各检索器的结果 | |
| all_results = [] | |
| for i, retriever in enumerate(self.retrievers): | |
| results = retriever.invoke(query) | |
| for doc in results: | |
| # 添加检索器索引和权重信息 | |
| doc.metadata["retriever_index"] = i | |
| doc.metadata["retriever_weight"] = self.weights[i] | |
| all_results.append(doc) | |
| return self._process_results(all_results) | |
| async def ainvoke(self, query): | |
| """异步执行检索并合并结果""" | |
| import asyncio | |
| # 并发获取各检索器的结果 | |
| # 注意:假设所有 retriever 都支持 ainvoke | |
| tasks = [retriever.ainvoke(query) for retriever in self.retrievers] | |
| results_list = await asyncio.gather(*tasks) | |
| all_results = [] | |
| for i, results in enumerate(results_list): | |
| for doc in results: | |
| # 添加检索器索引和权重信息 | |
| doc.metadata["retriever_index"] = i | |
| doc.metadata["retriever_weight"] = self.weights[i] | |
| all_results.append(doc) | |
| return self._process_results(all_results) | |
| def _process_results(self, all_results): | |
| """排序和去重处理""" | |
| # 根据权重排序并去重 | |
| # 简单实现:先按检索器索引排序,再按权重排序 | |
| all_results.sort(key=lambda x: (x.metadata["retriever_index"], -x.metadata["retriever_weight"])) | |
| # 去重(基于文档内容) | |
| unique_results = [] | |
| seen_content = set() | |
| for doc in all_results: | |
| content = doc.page_content | |
| if content not in seen_content: | |
| seen_content.add(content) | |
| unique_results.append(doc) | |
| return unique_results | |
| class DocumentProcessor: | |
| """文档处理器类,负责文档加载、处理和向量化""" | |
| def __init__(self): | |
| self.text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( | |
| chunk_size=CHUNK_SIZE, | |
| chunk_overlap=CHUNK_OVERLAP | |
| ) | |
| # Try to initialize embeddings with error handling | |
| try: | |
| import torch | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| print(f"✅ 检测到设备: {device}") | |
| if device == 'cuda': | |
| print(f" GPU型号: {torch.cuda.get_device_name(0)}") | |
| print(f" GPU内存: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB") | |
| self.embeddings = HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/all-MiniLM-L6-v2", # 轻量级嵌入模型 | |
| model_kwargs={'device': device}, # 自动选择GPU或CPU | |
| encode_kwargs={'normalize_embeddings': True} # 标准化嵌入向量 | |
| ) | |
| print(f"✅ HuggingFace嵌入模型初始化成功 (设备: {device})") | |
| except Exception as e: | |
| print(f"⚠️ HuggingFace嵌入初始化失败: {e}") | |
| print("正在尝试备用嵌入方案...") | |
| # Fallback to OpenAI embeddings or other alternatives | |
| from langchain_community.embeddings import FakeEmbeddings | |
| self.embeddings = FakeEmbeddings(size=384) # For testing purposes | |
| print("✅ 使用测试嵌入模型") | |
| self.vectorstore = None | |
| self.retriever = None | |
| self.bm25_retriever = None # BM25检索器 | |
| self.ensemble_retriever = None # 集成检索器 | |
| # 初始化重排器 | |
| self.reranker = None | |
| self._setup_reranker() | |
| # 初始化多模态支持 | |
| self.image_embeddings_model = None | |
| self._setup_multimodal() | |
| # 初始化查询扩展 | |
| self.query_expansion_model = None | |
| self._setup_query_expansion() | |
| def _setup_reranker(self): | |
| """ | |
| 设置重排器 | |
| 使用 CrossEncoder 提升重排准确率 | |
| """ | |
| try: | |
| # 使用 CrossEncoder 重排器 (准确率最高) ⭐ | |
| print("🔧 正在初始化 CrossEncoder 重排器...") | |
| self.reranker = create_reranker( | |
| 'crossencoder', | |
| model_name='cross-encoder/ms-marco-MiniLM-L-6-v2', # 轻量级模型 | |
| max_length=512 | |
| ) | |
| print("✅ CrossEncoder 重排器初始化成功") | |
| except Exception as e: | |
| print(f"⚠️ CrossEncoder 初始化失败: {e}") | |
| print("🔄 尝试回退到混合重排器...") | |
| try: | |
| # 回退到混合重排器 | |
| self.reranker = create_reranker('hybrid', self.embeddings) | |
| print("✅ 混合重排器初始化成功") | |
| except Exception as e2: | |
| print(f"⚠️ 重排器初始化完全失败: {e2}") | |
| print("⚠️ 将使用基础检索,不进行重排") | |
| def _setup_multimodal(self): | |
| """设置多模态支持""" | |
| if not ENABLE_MULTIMODAL: | |
| print("⚠️ 多模态支持已禁用") | |
| return | |
| try: | |
| print("🔧 正在初始化多模态支持...") | |
| from transformers import CLIPProcessor, CLIPModel | |
| import torch | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| self.image_embeddings_model = CLIPModel.from_pretrained(MULTIMODAL_IMAGE_MODEL).to(device) | |
| self.image_processor = CLIPProcessor.from_pretrained(MULTIMODAL_IMAGE_MODEL) | |
| print(f"✅ 多模态支持初始化成功 (设备: {device})") | |
| except Exception as e: | |
| print(f"⚠️ 多模态支持初始化失败: {e}") | |
| print("⚠️ 将仅使用文本检索") | |
| self.image_embeddings_model = None | |
| def _setup_query_expansion(self): | |
| """设置查询扩展""" | |
| if not ENABLE_QUERY_EXPANSION: | |
| print("⚠️ 查询扩展已禁用") | |
| return | |
| try: | |
| print("🔧 正在初始化查询扩展...") | |
| from langchain_community.llms import Ollama | |
| self.query_expansion_model = Ollama(model=QUERY_EXPANSION_MODEL) | |
| print(f"✅ 查询扩展初始化成功 (模型: {QUERY_EXPANSION_MODEL})") | |
| except Exception as e: | |
| print(f"⚠️ 查询扩展初始化失败: {e}") | |
| print("⚠️ 将不使用查询扩展") | |
| self.query_expansion_model = None | |
| def load_documents(self, urls=None): | |
| """从URL加载文档""" | |
| if urls is None: | |
| urls = KNOWLEDGE_BASE_URLS | |
| print(f"正在加载 {len(urls)} 个URL的文档...") | |
| docs = [WebBaseLoader(url).load() for url in urls] | |
| docs_list = [item for sublist in docs for item in sublist] | |
| print(f"成功加载 {len(docs_list)} 个文档") | |
| return docs_list | |
| def split_documents(self, docs): | |
| """将文档分割成块""" | |
| print("正在分割文档...") | |
| doc_splits = self.text_splitter.split_documents(docs) | |
| print(f"文档分割完成,共 {len(doc_splits)} 个文档块") | |
| return doc_splits | |
| def initialize_vectorstore(self): | |
| """初始化向量数据库连接""" | |
| if self.vectorstore: | |
| return | |
| print("正在连接向量数据库...") | |
| # 强制使用 Milvus | |
| try: | |
| # 准备连接参数 | |
| connection_args = {} | |
| is_local_file = False | |
| # 优先使用 URI | |
| if MILVUS_URI and len(MILVUS_URI.strip()) > 0: | |
| is_local_file = not (MILVUS_URI.startswith("http://") or MILVUS_URI.startswith("https://")) | |
| real_uri = MILVUS_URI | |
| if is_local_file: | |
| import os | |
| # Milvus Lite requires absolute path in some versions/environments | |
| if not os.path.isabs(real_uri): | |
| real_uri = os.path.abspath(real_uri) | |
| print(f"📂 将相对路径转换为绝对路径: {real_uri}") | |
| # 确保父目录存在 | |
| parent_dir = os.path.dirname(real_uri) | |
| if parent_dir and not os.path.exists(parent_dir): | |
| print(f"📂 创建 Milvus 存储目录: {parent_dir}") | |
| os.makedirs(parent_dir, exist_ok=True) | |
| mode_name = "Lite (Local File)" if is_local_file else "Cloud (HTTP)" | |
| print(f"🔄 正在连接 Milvus {mode_name} ({real_uri})...") | |
| connection_args["uri"] = real_uri | |
| if not is_local_file and MILVUS_PASSWORD: | |
| connection_args["token"] = MILVUS_PASSWORD | |
| else: | |
| print(f"🔄 正在连接 Milvus Server ({MILVUS_HOST}:{MILVUS_PORT})...") | |
| connection_args = { | |
| "host": MILVUS_HOST, | |
| "port": MILVUS_PORT, | |
| "user": MILVUS_USER, | |
| "password": MILVUS_PASSWORD | |
| } | |
| # 显式建立全局连接 (修复 ConnectionNotExistException) | |
| try: | |
| from pymilvus import connections, utility | |
| print(f"🔌 尝试建立 pymilvus 全局连接 (Alias: default)...") | |
| # 移除旧连接(如果存在)以防参数变更 | |
| if connections.has_connection("default"): | |
| connections.disconnect("default") | |
| connections.connect(alias="default", **connection_args) | |
| print("✅ pymilvus 全局连接建立成功") | |
| # 检查集合是否存在 (提前检查,避免 LangChain 内部出错) | |
| if utility.has_collection(COLLECTION_NAME, using="default"): | |
| print(f"✅ 集合 {COLLECTION_NAME} 已存在") | |
| else: | |
| print(f"ℹ️ 集合 {COLLECTION_NAME} 不存在,将由 Milvus 类自动创建") | |
| except ImportError: | |
| print("⚠️ 未找到 pymilvus 库,跳过显式连接") | |
| except Exception as e: | |
| print(f"⚠️ 显式连接尝试失败: {e}") | |
| # 继续尝试,也许 LangChain 内部能处理 | |
| # 确定索引类型 | |
| # Milvus Lite (本地模式) 仅支持 FLAT, IVF_FLAT, AUTOINDEX,不支持 HNSW | |
| final_index_type = MILVUS_INDEX_TYPE | |
| final_index_params = MILVUS_INDEX_PARAMS | |
| if is_local_file and MILVUS_INDEX_TYPE == "HNSW": | |
| print("⚠️ 检测到 Milvus Lite (本地模式),HNSW 索引不受支持,自动切换为 AUTOINDEX") | |
| final_index_type = "AUTOINDEX" | |
| final_index_params = {} # AUTOINDEX 不需要复杂参数 | |
| # 初始化 Milvus 连接 (不删除旧数据) | |
| # 注意:由于我们已经手动建立了全局连接 'default', | |
| # 这里我们将 connection_args 简化为仅指向该 alias, | |
| # 避免 LangChain 再次尝试连接或因参数问题覆盖连接。 | |
| self.vectorstore = Milvus( | |
| embedding_function=self.embeddings, | |
| collection_name=COLLECTION_NAME, | |
| connection_args={"alias": "default"}, # ✅ 复用已建立的连接 | |
| index_params={ | |
| "metric_type": "L2", | |
| "index_type": final_index_type, | |
| "params": final_index_params | |
| }, | |
| search_params={ | |
| "metric_type": "L2", | |
| "params": MILVUS_SEARCH_PARAMS | |
| }, | |
| drop_old=False, # ✅ 持久化关键:不删除旧索引 | |
| auto_id=True | |
| ) | |
| print("✅ Milvus 向量数据库连接成功") | |
| except ImportError: | |
| print("❌ 未安装 pymilvus,请运行: pip install pymilvus") | |
| raise | |
| except Exception as e: | |
| print(f"❌ Milvus 连接失败: {e}") | |
| raise | |
| # 配置检索器 | |
| retriever_kwargs = {} | |
| # if ENABLE_MULTIMODAL: | |
| # retriever_kwargs["expr"] = "data_type == 'text'" | |
| self.retriever = self.vectorstore.as_retriever(search_kwargs=retriever_kwargs) | |
| def check_existing_urls(self, urls: List[str]) -> set: | |
| """检查哪些URL已经存在于向量库中""" | |
| if not self.vectorstore: | |
| return set() | |
| existing = set() | |
| print("正在检查已存在的文档...") | |
| try: | |
| # 尝试通过检索来检查 | |
| # 注意:这里假设 source 字段可以作为过滤条件 | |
| for url in urls: | |
| # 使用 similarity_search 但带有严格过滤,且只取1条 | |
| # 这里的 query 没关系,主要看 filter | |
| try: | |
| # 注意:Milvus 的 expr 语法 | |
| expr = f'source == "{url}"' | |
| res = self.vectorstore.similarity_search( | |
| "test", | |
| k=1, | |
| expr=expr | |
| ) | |
| if res: | |
| existing.add(url) | |
| except Exception as e: | |
| # 如果失败,可能是 schema 问题,尝试 metadata 字段 | |
| try: | |
| expr = f'metadata["source"] == "{url}"' | |
| res = self.vectorstore.similarity_search( | |
| "test", | |
| k=1, | |
| expr=expr | |
| ) | |
| if res: | |
| existing.add(url) | |
| except: | |
| pass | |
| print(f"✅ 发现 {len(existing)} 个已存在的 URL") | |
| except Exception as e: | |
| print(f"⚠️ 检查现有URL失败: {e}") | |
| return existing | |
| def add_documents_to_vectorstore(self, doc_splits): | |
| """添加文档到向量库""" | |
| if not doc_splits: | |
| return | |
| print(f"正在添加 {len(doc_splits)} 个文档块到向量数据库...") | |
| if not self.vectorstore: | |
| self.initialize_vectorstore() | |
| # 添加元数据 | |
| for doc in doc_splits: | |
| if 'source_type' not in doc.metadata: | |
| source = doc.metadata.get('source', '') | |
| if any(fmt in source.lower() for fmt in SUPPORTED_IMAGE_FORMATS): | |
| doc.metadata['data_type'] = 'image' | |
| else: | |
| doc.metadata['data_type'] = 'text' | |
| self.vectorstore.add_documents(doc_splits) | |
| print("✅ 文档添加完成") | |
| def create_vectorstore(self, doc_splits, persist_directory=None): | |
| """(已弃用) 兼容旧接口,但使用新逻辑""" | |
| print("⚠️ create_vectorstore 已弃用,请使用 initialize_vectorstore 和 add_documents_to_vectorstore") | |
| self.initialize_vectorstore() | |
| if doc_splits: | |
| self.add_documents_to_vectorstore(doc_splits) | |
| return self.vectorstore, self.retriever | |
| def get_all_documents_from_vectorstore(self, limit: Optional[int] = None) -> List[Document]: | |
| """从已持久化的向量数据库读取所有文档内容并构造 Document 列表""" | |
| if not self.vectorstore: | |
| return [] | |
| try: | |
| data = self.vectorstore._collection.get(include=["documents", "metadatas"]) # type: ignore | |
| docs_raw = data.get("documents") or [] | |
| metas = data.get("metadatas") or [] | |
| docs: List[Document] = [] | |
| for i, content in enumerate(docs_raw): | |
| if content: | |
| meta = metas[i] if i < len(metas) else {} | |
| docs.append(Document(page_content=content, metadata=meta)) | |
| if limit: | |
| return docs[:limit] | |
| return docs | |
| except Exception as e: | |
| print(f"⚠️ 读取向量库文档失败: {e}") | |
| return [] | |
| def setup_knowledge_base(self, urls=None, enable_graphrag=False): | |
| """设置完整的知识库(加载、分割、向量化) | |
| Args: | |
| urls: 文档URL列表 | |
| enable_graphrag: 是否启用GraphRAG索引 | |
| Returns: | |
| vectorstore, retriever, doc_splits | |
| """ | |
| if urls is None: | |
| urls = KNOWLEDGE_BASE_URLS | |
| # 1. 初始化向量库连接 | |
| self.initialize_vectorstore() | |
| # 2. 检查已存在的 URL (去重) | |
| existing_urls = self.check_existing_urls(urls) | |
| new_urls = [url for url in urls if url not in existing_urls] | |
| doc_splits = [] | |
| if new_urls: | |
| print(f"🔄 发现 {len(new_urls)} 个新 URL,开始处理...") | |
| docs = self.load_documents(new_urls) | |
| doc_splits = self.split_documents(docs) | |
| self.add_documents_to_vectorstore(doc_splits) | |
| else: | |
| print("✅ 所有 URL 已存在,跳过文档加载和向量化") | |
| # 3. 初始化混合检索 (BM25) | |
| if ENABLE_HYBRID_SEARCH: | |
| print("正在初始化混合检索 (BM25)...") | |
| try: | |
| bm25_docs = [] | |
| # 如果有旧数据且这次没有加载全部数据,必须从 DB 加载所有文档以重建 BM25 | |
| # 注意:如果只有新文档,BM25 只会包含新文档,这是不对的。 | |
| # 只要有 existing_urls,说明库里有旧数据。 | |
| if len(existing_urls) > 0: | |
| print("🔄 正在从向量库加载所有文档以重建 BM25 索引...") | |
| # 注意:这里假设内存够大 | |
| all_docs = self.get_all_documents_from_vectorstore() | |
| bm25_docs = all_docs | |
| else: | |
| # 全新构建 | |
| bm25_docs = doc_splits | |
| if bm25_docs: | |
| self.bm25_retriever = BM25Retriever.from_documents( | |
| bm25_docs, | |
| k=KEYWORD_SEARCH_K, | |
| k1=BM25_K1, | |
| b=BM25_B | |
| ) | |
| self.ensemble_retriever = CustomEnsembleRetriever( | |
| retrievers=[self.retriever, self.bm25_retriever], | |
| weights=[HYBRID_SEARCH_WEIGHTS["vector"], HYBRID_SEARCH_WEIGHTS["keyword"]] | |
| ) | |
| print("✅ 混合检索初始化成功") | |
| else: | |
| print("⚠️ 没有文档用于初始化 BM25") | |
| except Exception as e: | |
| print(f"⚠️ 混合检索初始化失败: {e}") | |
| self.ensemble_retriever = None | |
| # 返回 doc_splits用于GraphRAG索引 (注意:这里只返回了新增的) | |
| return self.vectorstore, self.retriever, doc_splits | |
| async def async_expand_query(self, query: str) -> List[str]: | |
| """异步扩展查询""" | |
| if not self.query_expansion_model: | |
| return [query] | |
| try: | |
| # 使用LLM生成扩展查询 | |
| prompt = QUERY_EXPANSION_PROMPT.format(query=query) | |
| expanded_queries_text = await self.query_expansion_model.ainvoke(prompt) | |
| # 解析扩展查询 | |
| expanded_queries = [query] # 包含原始查询 | |
| for line in expanded_queries_text.strip().split('\n'): | |
| line = line.strip() | |
| if line and not line.startswith('#') and not line.startswith('//'): | |
| # 移除可能的编号前缀 | |
| if line[0].isdigit() and '.' in line[:5]: | |
| line = line.split('.', 1)[1].strip() | |
| expanded_queries.append(line) | |
| # 限制扩展查询数量 | |
| return expanded_queries[:MAX_EXPANDED_QUERIES + 1] | |
| except Exception as e: | |
| print(f"⚠️ 异步查询扩展失败: {e}") | |
| return [query] | |
| async def async_hybrid_retrieve(self, query: str, top_k: int = 5, filter_type: str = "text") -> List: | |
| """异步混合检索 | |
| Args: | |
| filter_type: 数据类型过滤,"text" (默认), "image", 或 "all" (不过滤) | |
| """ | |
| # 构建搜索参数 | |
| search_kwargs = {} | |
| if filter_type != "all" and ENABLE_MULTIMODAL: | |
| search_kwargs["expr"] = f"data_type == '{filter_type}'" | |
| if not ENABLE_HYBRID_SEARCH or not self.ensemble_retriever: | |
| # 纯向量检索,直接支持 search_kwargs | |
| if self.vectorstore: | |
| return await self.vectorstore.asimilarity_search(query, k=top_k, **search_kwargs) | |
| return await self.retriever.ainvoke(query) | |
| try: | |
| # 混合检索 | |
| # 注意:目前 CustomEnsembleRetriever 的 invoke/ainvoke 尚未透传 search_kwargs | |
| # 为了让混合检索也享受到过滤优化,我们需要修改 CustomEnsembleRetriever 或者在这里处理 | |
| # 鉴于 CustomEnsembleRetriever 比较简单,我们假设它主要用于文本 | |
| # 如果需要严格过滤,最好在 vectorstore 层面处理 | |
| # 临时方案:如果是混合检索且需要过滤,我们可能需要传递给 retriever | |
| # 但标准 retriever 接口不支持动态传参。 | |
| # 策略:如果 filter_type 是 text (默认),且我们在 init 时已经设置了默认不严格过滤, | |
| # 这里其实无法动态改变 retriever 的行为,除非我们重新生成一个 retriever 或者修改 retriever.search_kwargs | |
| # 动态修改 retriever 的 search_kwargs (这是 LangChain retriever 的特性) | |
| if filter_type != "all" and ENABLE_MULTIMODAL: | |
| self.retriever.search_kwargs["expr"] = f"data_type == '{filter_type}'" | |
| else: | |
| self.retriever.search_kwargs.pop("expr", None) | |
| results = await self.ensemble_retriever.ainvoke(query) | |
| return results[:top_k] | |
| except Exception as e: | |
| print(f"⚠️ 异步混合检索失败: {e}") | |
| print("回退到向量检索") | |
| if self.vectorstore: | |
| return await self.vectorstore.asimilarity_search(query, k=top_k, **search_kwargs) | |
| return await self.retriever.ainvoke(query) | |
| async def async_enhanced_retrieve(self, query: str, top_k: int = 5, rerank_candidates: int = 20, | |
| image_paths: List[str] = None, use_query_expansion: bool = None): | |
| """异步增强检索""" | |
| import asyncio | |
| # 确定是否使用查询扩展 | |
| if use_query_expansion is None: | |
| use_query_expansion = ENABLE_QUERY_EXPANSION | |
| # 如果启用查询扩展,生成扩展查询 | |
| if use_query_expansion: | |
| expanded_queries = await self.async_expand_query(query) | |
| print(f"查询扩展: {len(expanded_queries)} 个查询") | |
| else: | |
| expanded_queries = [query] | |
| # 多模态检索(暂时保持同步,使用线程池) | |
| if image_paths and ENABLE_MULTIMODAL: | |
| loop = asyncio.get_running_loop() | |
| return await loop.run_in_executor(None, self.multimodal_retrieve, query, image_paths, top_k) | |
| # 混合检索或向量检索 | |
| all_candidate_docs = [] | |
| # 决定过滤策略 | |
| # 默认情况下,如果只是文本查询,为了性能优化,我们只检索文本数据 | |
| # 如果提供了图像,或者用户显式要求,可以放开限制 | |
| filter_type = "text" # 默认只搜文本,实现百万级数据的性能优化 | |
| if image_paths: | |
| filter_type = "all" # 跨模态时搜所有 | |
| # 构建过滤表达式 (仅用于直接调用 vectorstore 的情况,async_hybrid_retrieve 内部已处理) | |
| search_kwargs = {} | |
| if filter_type != "all" and ENABLE_MULTIMODAL: | |
| search_kwargs["expr"] = f"data_type == '{filter_type}'" | |
| async def retrieve_single(q): | |
| if ENABLE_HYBRID_SEARCH: | |
| # 使用支持动态过滤的 hybrid retrieve | |
| docs = await self.async_hybrid_retrieve(q, rerank_candidates, filter_type=filter_type) | |
| else: | |
| # 使用带有过滤条件的检索 | |
| if self.vectorstore: | |
| docs = await self.vectorstore.asimilarity_search( | |
| q, | |
| k=rerank_candidates, | |
| **search_kwargs # 传入 expr | |
| ) | |
| else: | |
| # Fallback | |
| docs = await self.retriever.ainvoke(q) | |
| if len(docs) > rerank_candidates: | |
| docs = docs[:rerank_candidates] | |
| return docs | |
| # 并发执行所有查询的检索 | |
| results = await asyncio.gather(*[retrieve_single(q) for q in expanded_queries]) | |
| for docs in results: | |
| all_candidate_docs.extend(docs) | |
| # 去重(基于文档内容) | |
| unique_docs = [] | |
| seen_content = set() | |
| for doc in all_candidate_docs: | |
| content = doc.page_content | |
| if content not in seen_content: | |
| seen_content.add(content) | |
| unique_docs.append(doc) | |
| print(f"检索获得 {len(unique_docs)} 个候选文档") | |
| # 重排(如果重排器可用) | |
| # 注意:重排通常是计算密集型,建议放入线程池 | |
| if self.reranker and len(unique_docs) > top_k: | |
| try: | |
| loop = asyncio.get_running_loop() | |
| # rerank 方法内部可能也比较耗时 | |
| reranked_results = await loop.run_in_executor( | |
| None, | |
| self.reranker.rerank, | |
| query, unique_docs, top_k | |
| ) | |
| final_docs = [doc for doc, score in reranked_results] | |
| scores = [score for doc, score in reranked_results] | |
| print(f"重排后返回 {len(final_docs)} 个文档") | |
| print(f"重排分数范围: {min(scores):.4f} - {max(scores):.4f}") | |
| return final_docs | |
| except Exception as e: | |
| print(f"⚠️ 重排失败: {e},使用原始检索结果") | |
| return unique_docs[:top_k] | |
| else: | |
| return unique_docs[:top_k] | |
| def expand_query(self, query: str) -> List[str]: | |
| """扩展查询,生成相关查询""" | |
| if not self.query_expansion_model: | |
| return [query] | |
| try: | |
| # 使用LLM生成扩展查询 | |
| prompt = QUERY_EXPANSION_PROMPT.format(query=query) | |
| expanded_queries_text = self.query_expansion_model.invoke(prompt) | |
| # 解析扩展查询 | |
| expanded_queries = [query] # 包含原始查询 | |
| for line in expanded_queries_text.strip().split('\n'): | |
| line = line.strip() | |
| if line and not line.startswith('#') and not line.startswith('//'): | |
| # 移除可能的编号前缀 | |
| if line[0].isdigit() and '.' in line[:5]: | |
| line = line.split('.', 1)[1].strip() | |
| expanded_queries.append(line) | |
| # 限制扩展查询数量 | |
| return expanded_queries[:MAX_EXPANDED_QUERIES + 1] # +1 因为包含原始查询 | |
| except Exception as e: | |
| print(f"⚠️ 查询扩展失败: {e}") | |
| return [query] | |
| def encode_image(self, image_path: str) -> np.ndarray: | |
| """编码图像为嵌入向量""" | |
| if not self.image_embeddings_model: | |
| raise ValueError("多模态支持未初始化") | |
| try: | |
| # 加载并处理图像 | |
| image = Image.open(image_path).convert('RGB') | |
| inputs = self.image_processor(images=image, return_tensors="pt") | |
| # 获取图像嵌入 | |
| with torch.no_grad(): | |
| image_features = self.image_embeddings_model.get_image_features(**inputs) | |
| # 标准化嵌入向量 | |
| image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) | |
| return image_features.cpu().numpy().flatten() | |
| except Exception as e: | |
| print(f"⚠️ 图像编码失败: {e}") | |
| raise | |
| def multimodal_retrieve(self, query: str, image_paths: List[str] = None, top_k: int = 5) -> List: | |
| """多模态检索,结合文本和图像""" | |
| if not ENABLE_MULTIMODAL or not self.image_embeddings_model: | |
| # 如果多模态未启用,回退到文本检索 | |
| return self.hybrid_retrieve(query, top_k) if ENABLE_HYBRID_SEARCH else self.retriever.invoke(query)[:top_k] | |
| # 1. 文本查询 (Text-to-Text & Text-to-Image) | |
| # 如果提供了文本查询,我们希望它能检索到文本和相关图像 | |
| # 此时不应该限制 data_type,或者应该显式包含两者 | |
| # 如果没有提供图像,这可能是一个纯文本查询,但也可能想搜图 | |
| # 这里我们让 self.retriever (或 hybrid) 负责所有模态的检索 | |
| # (前提是它们都在同一个向量空间,CLIP 可以做到这一点) | |
| text_docs = [] | |
| if query: | |
| text_docs = self.hybrid_retrieve(query, top_k) if ENABLE_HYBRID_SEARCH else self.retriever.invoke(query)[:top_k] | |
| # 如果没有提供图像输入,直接返回文本查询的结果 | |
| if not image_paths: | |
| return text_docs | |
| try: | |
| # 2. 图像查询 (Image-to-Text & Image-to-Image) | |
| image_results = [] | |
| for image_path in image_paths: | |
| # 检查文件格式 | |
| file_ext = image_path.split('.')[-1].lower() | |
| if file_ext not in SUPPORTED_IMAGE_FORMATS: | |
| print(f"⚠️ 不支持的图像格式: {file_ext}") | |
| continue | |
| # 编码图像 | |
| image_embedding = self.encode_image(image_path) | |
| # 使用图像嵌入进行检索 | |
| if self.vectorstore: | |
| # 图像可以检索文本描述,也可以检索相似图像 | |
| # 这里我们不做限制,检索所有类型 | |
| img_docs = self.vectorstore.similarity_search_by_vector( | |
| embedding=image_embedding, | |
| k=top_k | |
| ) | |
| image_results.extend(img_docs) | |
| # 合并文本查询结果和图像查询结果 | |
| # 简单合并并去重 | |
| all_docs = text_docs + image_results | |
| # 去重 | |
| unique_docs = [] | |
| seen_content = set() | |
| for doc in all_docs: | |
| content = doc.page_content | |
| if content not in seen_content: | |
| seen_content.add(content) | |
| unique_docs.append(doc) | |
| final_docs = unique_docs[:top_k] | |
| print(f"✅ 多模态检索完成,返回 {len(final_docs)} 个结果") | |
| return final_docs | |
| except Exception as e: | |
| print(f"⚠️ 多模态检索失败: {e}") | |
| print("回退到文本检索") | |
| return text_docs | |
| def hybrid_retrieve(self, query: str, top_k: int = 5) -> List: | |
| """混合检索,结合向量检索和关键词检索""" | |
| if not ENABLE_HYBRID_SEARCH or not self.ensemble_retriever: | |
| # 如果混合检索未启用,回退到向量检索 | |
| return self.retriever.invoke(query)[:top_k] | |
| try: | |
| # 使用集成检索器进行混合检索 | |
| results = self.ensemble_retriever.invoke(query) | |
| return results[:top_k] | |
| except Exception as e: | |
| print(f"⚠️ 混合检索失败: {e}") | |
| print("回退到向量检索") | |
| return self.retriever.invoke(query)[:top_k] | |
| def enhanced_retrieve(self, query: str, top_k: int = 5, rerank_candidates: int = 20, | |
| image_paths: List[str] = None, use_query_expansion: bool = None): | |
| """增强检索:先检索更多候选,然后重排,支持查询扩展和多模态 | |
| Args: | |
| query: 查询字符串 | |
| top_k: 返回的文档数量 | |
| rerank_candidates: 重排前的候选文档数量 | |
| image_paths: 图像路径列表,用于多模态检索 | |
| use_query_expansion: 是否使用查询扩展,None表示使用配置默认值 | |
| """ | |
| # 确定是否使用查询扩展 | |
| if use_query_expansion is None: | |
| use_query_expansion = ENABLE_QUERY_EXPANSION | |
| # 如果启用查询扩展,生成扩展查询 | |
| if use_query_expansion: | |
| expanded_queries = self.expand_query(query) | |
| print(f"查询扩展: {len(expanded_queries)} 个查询") | |
| else: | |
| expanded_queries = [query] | |
| # 多模态检索(如果提供了图像) | |
| if image_paths and ENABLE_MULTIMODAL: | |
| return self.multimodal_retrieve(query, image_paths, top_k) | |
| # 混合检索或向量检索 | |
| all_candidate_docs = [] | |
| for expanded_query in expanded_queries: | |
| if ENABLE_HYBRID_SEARCH: | |
| # 使用混合检索 | |
| docs = self.hybrid_retrieve(expanded_query, rerank_candidates) | |
| else: | |
| # 使用向量检索 | |
| docs = self.retriever.invoke(expanded_query) | |
| if len(docs) > rerank_candidates: | |
| docs = docs[:rerank_candidates] | |
| all_candidate_docs.extend(docs) | |
| # 去重(基于文档内容) | |
| unique_docs = [] | |
| seen_content = set() | |
| for doc in all_candidate_docs: | |
| content = doc.page_content | |
| if content not in seen_content: | |
| seen_content.add(content) | |
| unique_docs.append(doc) | |
| print(f"检索获得 {len(unique_docs)} 个候选文档") | |
| # 重排(如果重排器可用) | |
| if self.reranker and len(unique_docs) > top_k: | |
| try: | |
| reranked_results = self.reranker.rerank(query, unique_docs, top_k) | |
| final_docs = [doc for doc, score in reranked_results] | |
| scores = [score for doc, score in reranked_results] | |
| print(f"重排后返回 {len(final_docs)} 个文档") | |
| print(f"重排分数范围: {min(scores):.4f} - {max(scores):.4f}") | |
| return final_docs | |
| except Exception as e: | |
| print(f"⚠️ 重排失败: {e},使用原始检索结果") | |
| return unique_docs[:top_k] | |
| else: | |
| # 不重排或候选数量不足 | |
| return unique_docs[:top_k] | |
| def compare_retrieval_methods(self, query: str, top_k: int = 5, image_paths: List[str] = None): | |
| """比较不同检索方法的效果""" | |
| if not self.retriever: | |
| return {} | |
| results = { | |
| 'query': query, | |
| 'image_paths': image_paths | |
| } | |
| # 原始检索 (使用 invoke 替代 get_relevant_documents) | |
| original_docs = self.retriever.invoke(query)[:top_k] | |
| results['vector_retrieval'] = { | |
| 'count': len(original_docs), | |
| 'documents': [{ | |
| 'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content, | |
| 'metadata': getattr(doc, 'metadata', {}) | |
| } for doc in original_docs] | |
| } | |
| # 混合检索(如果启用) | |
| if ENABLE_HYBRID_SEARCH and self.ensemble_retriever: | |
| hybrid_docs = self.hybrid_retrieve(query, top_k) | |
| results['hybrid_retrieval'] = { | |
| 'count': len(hybrid_docs), | |
| 'documents': [{ | |
| 'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content, | |
| 'metadata': getattr(doc, 'metadata', {}) | |
| } for doc in hybrid_docs] | |
| } | |
| # 查询扩展检索(如果启用) | |
| if ENABLE_QUERY_EXPANSION and self.query_expansion_model: | |
| expanded_docs = self.enhanced_retrieve(query, top_k, use_query_expansion=True) | |
| results['expanded_query_retrieval'] = { | |
| 'count': len(expanded_docs), | |
| 'documents': [{ | |
| 'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content, | |
| 'metadata': getattr(doc, 'metadata', {}) | |
| } for doc in expanded_docs] | |
| } | |
| # 多模态检索(如果启用且有图像) | |
| if ENABLE_MULTIMODAL and image_paths: | |
| multimodal_docs = self.multimodal_retrieve(query, image_paths, top_k) | |
| results['multimodal_retrieval'] = { | |
| 'count': len(multimodal_docs), | |
| 'documents': [{ | |
| 'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content, | |
| 'metadata': getattr(doc, 'metadata', {}) | |
| } for doc in multimodal_docs] | |
| } | |
| # 增强检索(带重排) | |
| enhanced_docs = self.enhanced_retrieve(query, top_k) | |
| results['enhanced_retrieval'] = { | |
| 'count': len(enhanced_docs), | |
| 'documents': [{ | |
| 'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content, | |
| 'metadata': getattr(doc, 'metadata', {}) | |
| } for doc in enhanced_docs] | |
| } | |
| # 添加配置信息 | |
| results['configuration'] = { | |
| 'hybrid_search_enabled': ENABLE_HYBRID_SEARCH, | |
| 'query_expansion_enabled': ENABLE_QUERY_EXPANSION, | |
| 'multimodal_enabled': ENABLE_MULTIMODAL, | |
| 'reranker_used': self.reranker is not None, | |
| 'hybrid_weights': HYBRID_SEARCH_WEIGHTS if ENABLE_HYBRID_SEARCH else None, | |
| 'multimodal_weights': MULTIMODAL_WEIGHTS if ENABLE_MULTIMODAL else None | |
| } | |
| return results | |
| def format_docs(self, docs): | |
| """格式化文档用于生成""" | |
| return "\n\n".join(doc.page_content for doc in docs) | |
| def initialize_document_processor(): | |
| """初始化文档处理器并设置知识库""" | |
| print("🚀 初始化文档处理器 (Milvus 版)...") | |
| processor = DocumentProcessor() | |
| # 直接设置知识库 | |
| # Milvus 的连接和索引逻辑在 DocumentProcessor.create_vectorstore 中处理 | |
| vectorstore, retriever, doc_splits = processor.setup_knowledge_base() | |
| return processor, vectorstore, retriever, doc_splits | |