Spaces:
Runtime error
Runtime error
Commit
·
d6fe440
1
Parent(s):
07be122
Upload 3 files
Browse files- app.py +70 -0
- checpoint_epoch_4.pt +3 -0
- dog_1.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np # linear algebra
|
3 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
8 |
+
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
9 |
+
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
10 |
+
import torch.nn.functional as F # All functions that don't have any parameters
|
11 |
+
from torch.utils.data import DataLoader, Dataset # Gives easier dataset managment and creates mini batches
|
12 |
+
from torchvision.datasets import ImageFolder
|
13 |
+
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use gpu or cpu
|
17 |
+
|
18 |
+
from tqdm import tqdm
|
19 |
+
from torchvision import models
|
20 |
+
# load pretrain model and modify...
|
21 |
+
model = models.resnet50(pretrained=True)
|
22 |
+
|
23 |
+
# If you want to do finetuning then set requires_grad = False
|
24 |
+
# Remove these two lines if you want to train entire model,
|
25 |
+
# and only want to load the pretrain weights.
|
26 |
+
|
27 |
+
for param in model.parameters():
|
28 |
+
param.requires_grad = False
|
29 |
+
|
30 |
+
num_ftrs = model.fc.in_features
|
31 |
+
model.fc = nn.Linear(num_ftrs, 2)
|
32 |
+
|
33 |
+
model.to(device)
|
34 |
+
|
35 |
+
# Loss and optimizer
|
36 |
+
criterion = nn.CrossEntropyLoss()
|
37 |
+
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
38 |
+
|
39 |
+
checkpoint = torch.load("D:\cats_dogs\cats_dogs\checpoint_epoch_4.pt",
|
40 |
+
map_location=torch.device('cpu'))
|
41 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
42 |
+
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
43 |
+
|
44 |
+
|
45 |
+
def image_classifier(inp):
|
46 |
+
model.eval()
|
47 |
+
|
48 |
+
data_transforms = transforms.Compose([
|
49 |
+
transforms.ToTensor(),
|
50 |
+
transforms.Resize((224, 224)),
|
51 |
+
transforms.Normalize([0.5] * 3, [0.5] * 3), ])
|
52 |
+
img = data_transforms(inp).unsqueeze(dim=0)
|
53 |
+
|
54 |
+
img = img.to(device)
|
55 |
+
pred = model(img)
|
56 |
+
_, preds = torch.max(pred, 1)
|
57 |
+
print(f"class : {preds}")
|
58 |
+
cur_name = ""
|
59 |
+
if preds[0] == 1:
|
60 |
+
print(f"predicted ----> Dog")
|
61 |
+
cur_name = "DOG"
|
62 |
+
else:
|
63 |
+
print(f"predicted ----> Cat")
|
64 |
+
cur_name = "CAT"
|
65 |
+
|
66 |
+
return cur_name
|
67 |
+
|
68 |
+
|
69 |
+
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="text")
|
70 |
+
demo.launch()
|
checpoint_epoch_4.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4041e5a95287674e8b88731d4521bdb52dd593f54931f84f7b75fcf7f59a6c6
|
3 |
+
size 94407571
|
dog_1.jpg
ADDED
![]() |