Transport_Mode_Detector / data_enrich.py
agueroooooooooo's picture
First Commit
3d75a04
raw
history blame
7.06 kB
import os
import pickle
from math import cos, sin, atan2
import numpy as np
from geopy import distance
class DataEnrich:
def __init__(self):
pass
def _load_raw_pickle(self):
return pickle.load(open("data/raw_labeled.pkl","rb"))
def consolidate_trajectories(self):
raw_dfs = self._load_raw_pickle()
trajectories = []
for traj_of_person in raw_dfs:
dfs_with_label = []
for traj in traj_of_person:
if "label" in traj.columns:
traj = traj.replace(to_replace='None', value=np.nan).dropna()
traj.reset_index(inplace=True)
dfs_with_label.append(traj)
if dfs_with_label:
trajectories.extend(dfs_with_label)
return trajectories
def _calc_speed(self, distance, ts_a, ts_b):
time_delta = ts_b - ts_a
if time_delta.total_seconds() == 0:
return 0
return distance / time_delta.total_seconds() # m/s
def _calc_accel(self, speed_a, speed_b, ts_a, ts_b):
time_delta = ts_b - ts_a
speed_delta = speed_b - speed_a
if time_delta.total_seconds() == 0:
return 0
return speed_delta / time_delta.total_seconds() # m/s^2
def _calc_jerk(self, acc_a, acc_b, ts_a, ts_b):
time_delta = ts_b - ts_a
acc_delta = acc_b - acc_a
if time_delta.total_seconds() == 0:
return 0
return acc_delta / time_delta.total_seconds()
def _calc_bearing_rate(self, bearing_a, bearing_b, ts_a, ts_b):
time_delta = ts_b - ts_a
bear_delta = bearing_b - bearing_a
if time_delta.total_seconds() == 0:
return 0
return bear_delta / time_delta.total_seconds()
def calc_dist_for_row(self, trajectory_frame, i):
lat_1 = trajectory_frame["lat"][i-1]
lat_2 = trajectory_frame["lat"][i]
if lat_1 > 90:
print("Faulty", lat_1)
lat_1 /= 10
if lat_2 > 90:
print("Faulty", lat_2)
lat_2 /= 10
point_a = (lat_1, trajectory_frame["lon"][i-1])
point_b = (lat_2, trajectory_frame["lon"][i])
if point_a[0] == point_b[0] and point_a[1] == point_b[1]:
trajectory_frame["dist"][i] = 0
else:
trajectory_frame["dist"][i] = distance.distance((point_a[0], point_a[1]), (point_b[0], point_b[1])).m
def calc_speed_for_row(self, trajectory_frame, i):
trajectory_frame["speed"][i] = self._calc_speed(trajectory_frame["dist"][i],
trajectory_frame["datetime"][i-1],
trajectory_frame["datetime"][i]
)
def calc_accel_for_row(self, trajectory_frame, i):
trajectory_frame["accel"][i] = self._calc_accel(trajectory_frame["speed"][i-1],
trajectory_frame["speed"][i],
trajectory_frame["datetime"][i - 1],
trajectory_frame["datetime"][i]
)
def set_sample_rate(self, trajectory_frame, min_sec_distance_between_points):
i = 1
indices_to_del = []
deleted = 1
while i < len(trajectory_frame)-deleted:
ts1 = trajectory_frame["datetime"][i]
ts2 = trajectory_frame["datetime"][i+deleted]
delta = ts2-ts1
if delta.seconds < min_sec_distance_between_points:
deleted+=1
indices_to_del.append(i)
continue
i+=deleted
deleted = 1
if indices_to_del:
trajectory_frame.drop(trajectory_frame.index[indices_to_del],inplace=True)
trajectory_frame.reset_index(inplace=True)
def set_time_between_points(self, trajectory_frame, i):
trajectory_frame["timedelta"][i] = (trajectory_frame["datetime"][i]-trajectory_frame["datetime"][i-1]).total_seconds()
def calc_jerk_for_row(self, trajectory_frame, i):
trajectory_frame["jerk"][i] = self._calc_jerk(trajectory_frame["accel"][i - 1],
trajectory_frame["accel"][i],
trajectory_frame["datetime"][i - 1],
trajectory_frame["datetime"][i]
)
def calc_bearing_for_row(self, trajectory_frame, i):
a_lat = trajectory_frame["lat"][i - 1]
a_lon = trajectory_frame["lon"][i - 1]
b_lat = trajectory_frame["lat"][i]
b_lon = trajectory_frame["lon"][i]
x = cos(b_lat) * sin(b_lon-a_lon)
y = cos(a_lat) * sin(b_lat) - sin(a_lat) * cos(b_lat) * cos(b_lon-a_lon)
trajectory_frame["bearing"][i] = atan2(x, y)
def calc_bearing_rate_for_row(self, trajectory_frame, i):
trajectory_frame["bearing_rate"][i] = self._calc_bearing_rate(trajectory_frame["bearing"][i - 1],
trajectory_frame["bearing"][i],
trajectory_frame["datetime"][i - 1],
trajectory_frame["datetime"][i]
)
def calc_features_for_frame(self, traj_frame):
traj_frame["dist"] = 0
traj_frame["timedelta"] = 0
traj_frame["speed"] = 0
traj_frame["accel"] = 0
traj_frame["jerk"] = 0
traj_frame["bearing"] = 0
traj_frame["bearing_rate"] = 0
for i, elem in traj_frame.iterrows():
if i == 0:
continue
self.set_time_between_points(traj_frame, i)
self.calc_dist_for_row(traj_frame, i)
self.calc_speed_for_row(traj_frame, i)
self.calc_accel_for_row(traj_frame, i)
self.calc_jerk_for_row(traj_frame, i)
self.calc_bearing_for_row(traj_frame, i)
self.calc_bearing_rate_for_row(traj_frame, i)
def get_enriched_data(self, from_pickle):
if from_pickle:
if os.path.isfile("data/raw_enriched.pkl"):
print("Reading raw_enriched.pkl")
return pickle.load(open("data/raw_enriched.pkl", "rb"))
else:
print("No pickled enriched dataset, creating. This will take a while.")
traj = self.consolidate_trajectories()
for elem in traj:
self.set_sample_rate(elem, 5)
self.calc_features_for_frame(elem)
print("Done, dumping")
pickle.dump(traj, open("data/raw_enriched.pkl", "wb"))
return traj
if __name__ == '__main__':
a=DataEnrich()
z=a.get_enriched_data(False)
print(z)
print("DOneP")