Spaces:
Sleeping
Sleeping
Agarwal
commited on
Commit
·
9fa8ff6
1
Parent(s):
e38260c
add model
Browse files- .ipynb_checkpoints/README-checkpoint.md +6 -0
- .ipynb_checkpoints/app-checkpoint.py +59 -0
- .ipynb_checkpoints/calculate_profiles-checkpoint.py +80 -0
- .ipynb_checkpoints/utils-checkpoint.py +69 -0
- README.md +6 -13
- app.py +55 -6
- calculate_profiles.py +80 -0
- inputs/.ipynb_checkpoints/simulations-checkpoint.txt +133 -0
- inputs/simulations.txt +133 -0
- numpy_networks/mlp_[256, 256, 256, 256].pkl +3 -0
- outputs/.ipynb_checkpoints/profile_raq_ra5.0_fkt100000.0_fkv10.0-checkpoint.txt +128 -0
- outputs/.ipynb_checkpoints/profile_raq_ra7.5_fkt1000000000.0_fkv25.0-checkpoint.png +0 -0
- outputs/.ipynb_checkpoints/profile_raq_ra7.5_fkt1000000000.0_fkv25.0-checkpoint.txt +128 -0
- stats/.ipynb_checkpoints/MLP_stats-checkpoint.txt +23 -0
- stats/.ipynb_checkpoints/overall_stats-checkpoint.txt +9 -0
- stats/.ipynb_checkpoints/profiles_cv-checkpoint.pdf +0 -0
- stats/.ipynb_checkpoints/profiles_test-checkpoint.pdf +0 -0
- stats/MLP_stats.txt +23 -0
- stats/MLP_stats_modes.txt +23 -0
- stats/overall_stats.txt +9 -0
- stats/overall_stats_modes.txt +9 -0
- utils.py +69 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This respository contains trained neural networks that can be used to predict the steady-state temperature profile.
|
2 |
+
|
3 |
+
Step 1: Define the simulation parameters
|
4 |
+
Step 2: The output is as follows
|
5 |
+
- the depth profile (first column) and the temperature profile (second column)
|
6 |
+
- corresonding plot of the temperature profile
|
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
+
from utils import *
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
raq_ra = st.number_input("# raq/ra ", value=None, placeholder="betweel 0 and 10")
|
8 |
+
st.write("raq/ra = ", raq_ra)
|
9 |
+
|
10 |
+
fkt = st.number_input("# FKT ", value=None, placeholder="betweel 1e+6 and 1e+10")
|
11 |
+
st.write("FKT = ", fkt)
|
12 |
+
|
13 |
+
fkv = st.number_input("# FKV ", value=None, placeholder="betweel 0 and 100")
|
14 |
+
st.write("FKV = ", fkv)
|
15 |
+
|
16 |
+
num_points = st.number_input("# number of profile points ", value=None, placeholder=" e.g. 128")
|
17 |
+
st.write("number of profile points = ", num_points)
|
18 |
+
|
19 |
+
with open('numpy_networks/mlp_[256, 256, 256, 256].pkl', 'rb') as file:
|
20 |
+
mlp = pickle.load(file)
|
21 |
+
|
22 |
+
r_list = [raq_ra]
|
23 |
+
t_list = [fkt]
|
24 |
+
v_list = [fkv]
|
25 |
+
|
26 |
+
for i in range(len(r_list)):
|
27 |
+
if r_list[i]<0 or r_list[i]>9.5:
|
28 |
+
warnings.warn('RaQ/Ra is outside the range of the training dataset')
|
29 |
+
if t_list[i]<1e+6 or t_list[i]>5e+9:
|
30 |
+
warnings.warn('FKT is outside the range of the training dataset')
|
31 |
+
if v_list[i]<1 or v_list[i]>95:
|
32 |
+
warnings.warn('FKV is outside the range of the training dataset')
|
33 |
+
|
34 |
+
y_prof = np.linspace(0,1,num_points)[::-1]
|
35 |
+
|
36 |
+
### calculates temperature profile ###
|
37 |
+
x_in = get_input(r_list, t_list, v_list, y_prof)
|
38 |
+
y_pred_nn_pointwise = get_profile(x_in, mlp, num_sims=len(r_list))
|
39 |
+
### calculates temperature profile ###
|
40 |
+
|
41 |
+
### writes out temperature profile ###
|
42 |
+
st.write("Depth", "Temperature")
|
43 |
+
for i in range(len(r_list)):
|
44 |
+
for j in range(len(y_prof)):
|
45 |
+
st.write(str(y_prof[j]) ," ", str(y_pred_nn_pointwise[i,j]), "\n")
|
46 |
+
### writes out temperature profile ###
|
47 |
+
|
48 |
+
|
49 |
+
### plots temperature profile ###
|
50 |
+
for i in range(len(r_list)):
|
51 |
+
plt.figure()
|
52 |
+
plt.plot(y_pred_nn_pointwise[i,:], y_prof, 'k-', linewidth=3.0, label="pointwise neural network")
|
53 |
+
plt.ylim([1,0])
|
54 |
+
plt.xlabel("Temperature")
|
55 |
+
plt.ylabel("Depth")
|
56 |
+
plt.legend()
|
57 |
+
plt.grid()
|
58 |
+
st.pyplot(fig)
|
59 |
+
### plots temperature profile ###
|
.ipynb_checkpoints/calculate_profiles-checkpoint.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from matplotlib import pyplot as plt
|
2 |
+
from utils import *
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
#### Define outputs ####
|
6 |
+
write_file = True
|
7 |
+
plot_profile = True
|
8 |
+
#### Define outputs ####
|
9 |
+
|
10 |
+
with open('numpy_networks/mlp_[256, 256, 256, 256].pkl', 'rb') as file:
|
11 |
+
mlp = pickle.load(file)
|
12 |
+
|
13 |
+
f_nn = "my_simulation_parameters.txt"
|
14 |
+
with open(f_nn) as fw:
|
15 |
+
lines = fw.readlines()
|
16 |
+
|
17 |
+
for line in lines:
|
18 |
+
l = line.rstrip()
|
19 |
+
if "r_list" in l:
|
20 |
+
if not l[-1] == ",":
|
21 |
+
raise Exception("Ensure there is a comma after last parameter value in " + f_nn)
|
22 |
+
r_list = [float(p) for p in l.split("=")[1].split(",")[:-1]]
|
23 |
+
elif "t_list" in line:
|
24 |
+
if not l[-1] == ",":
|
25 |
+
raise Exception("Ensure there is a comma after last parameter value in " + f_nn)
|
26 |
+
t_list = [float(p) for p in l.split("=")[1].split(",")[:-1]]
|
27 |
+
elif "v_list" in line:
|
28 |
+
if not l[-1] == ",":
|
29 |
+
raise Exception("Ensure there is a comma after last parameter value in " + f_nn)
|
30 |
+
v_list = [float(p) for p in l.split("=")[1].split(",")[:-1]]
|
31 |
+
|
32 |
+
if not len(r_list) == len(v_list) and len(r_list) == len(t_list):
|
33 |
+
raise Exception("Ensure equal number of values for all parameters in " + f_nn)
|
34 |
+
|
35 |
+
for i in range(len(r_list)):
|
36 |
+
if r_list[i]<0 or r_list[i]>9.5:
|
37 |
+
warnings.warn('RaQ/Ra is outside the range of the training dataset')
|
38 |
+
if t_list[i]<1e+6 or t_list[i]>5e+9:
|
39 |
+
warnings.warn('FKT is outside the range of the training dataset')
|
40 |
+
if v_list[i]<1 or v_list[i]>95:
|
41 |
+
warnings.warn('FKV is outside the range of the training dataset')
|
42 |
+
|
43 |
+
### calculates y points ###
|
44 |
+
num_points = 128
|
45 |
+
y_prof = np.linspace(0,1,num_points)[::-1]
|
46 |
+
### calculates y points ###
|
47 |
+
|
48 |
+
|
49 |
+
### calculates temperature profile ###
|
50 |
+
x_in = get_input(r_list, t_list, v_list, y_prof)
|
51 |
+
y_pred_nn_pointwise = get_profile(x_in, mlp, num_sims=len(r_list))
|
52 |
+
### calculates temperature profile ###
|
53 |
+
|
54 |
+
|
55 |
+
### writes out temperature profile ###
|
56 |
+
if write_file:
|
57 |
+
for i in range(len(r_list)):
|
58 |
+
fname = "outputs/profile_raq_ra" + str(r_list[i]) + "_fkt" + str(t_list[i]) + "_fkv" + str(v_list[i])
|
59 |
+
f = open(fname + ".txt", "wb")
|
60 |
+
for j in range(len(y_prof)):
|
61 |
+
f.writelines([str(y_prof[j]).encode('ascii'),
|
62 |
+
" ".encode('ascii'),
|
63 |
+
str(y_pred_nn_pointwise[i,j]).encode('ascii'),
|
64 |
+
"\n".encode('ascii')])
|
65 |
+
f.close()
|
66 |
+
### writes out temperature profile ###
|
67 |
+
|
68 |
+
|
69 |
+
### plots temperature profile ###
|
70 |
+
for i in range(len(r_list)):
|
71 |
+
fname = "outputs/profile_raq_ra" + str(r_list[i]) + "_fkt" + str(t_list[i]) + "_fkv" + str(v_list[i])
|
72 |
+
plt.figure()
|
73 |
+
plt.plot(y_pred_nn_pointwise[i,:], y_prof, 'k-', linewidth=3.0, label="pointwise neural network")
|
74 |
+
plt.ylim([1,0])
|
75 |
+
plt.xlabel("Temperature")
|
76 |
+
plt.ylabel("Depth")
|
77 |
+
plt.legend()
|
78 |
+
plt.grid()
|
79 |
+
plt.savefig(fname + ".png")
|
80 |
+
### plots temperature profile ###
|
.ipynb_checkpoints/utils-checkpoint.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
def selu(x):
|
5 |
+
alpha = 1.6732632423543772848170429916717
|
6 |
+
scale = 1.0507009873554804934193349852946
|
7 |
+
return scale*( np.maximum(0,x) + np.minimum(alpha*(np.exp(x)-1), 0) )
|
8 |
+
|
9 |
+
def non_dimensionalize_raq(x):
|
10 |
+
return (x-0.12624371)/(9.70723344-0.12624371)
|
11 |
+
|
12 |
+
def non_dimensionalize_fkt(x):
|
13 |
+
return (np.log10(x)-6.00352841978384)/(9.888820429862925-6.00352841978384)
|
14 |
+
|
15 |
+
def non_dimensionalize_fkv(x):
|
16 |
+
return (np.log10(x)-0.005251646002323797)/(1.9927988938926755-0.005251646002323797)
|
17 |
+
|
18 |
+
def dimensionalize_raq(x):
|
19 |
+
return x*(9.70723344-0.12624371) + 0.12624371
|
20 |
+
|
21 |
+
def dimensionalize_fkt(x):
|
22 |
+
return 10**(x*(9.888820429862925-6.00352841978384)+6.00352841978384)
|
23 |
+
|
24 |
+
def dimensionalize_fkv(x):
|
25 |
+
return 10**(x*(1.9927988938926755-0.005251646002323797)+0.005251646002323797)
|
26 |
+
|
27 |
+
def get_input(raq_ra, fkt, fkp, y_prof):
|
28 |
+
|
29 |
+
x = np.zeros((len(raq_ra)*len(y_prof), 4))
|
30 |
+
|
31 |
+
cntr = 0
|
32 |
+
for i in range(len(raq_ra)):
|
33 |
+
for j in range(len(y_prof)):
|
34 |
+
x[cntr,0] = non_dimensionalize_raq(raq_ra[i])
|
35 |
+
x[cntr,1] = non_dimensionalize_fkt(fkt[i])
|
36 |
+
x[cntr,2] = non_dimensionalize_fkv(fkp[i])
|
37 |
+
x[cntr,3] = y_prof[j]
|
38 |
+
cntr += 1
|
39 |
+
|
40 |
+
return x
|
41 |
+
|
42 |
+
def get_profile(inp, mlp, num_sims=1, num_points=128):
|
43 |
+
|
44 |
+
num_layers = len(mlp)-1
|
45 |
+
y_pred = inp
|
46 |
+
res = []
|
47 |
+
for l in range(num_layers+1):
|
48 |
+
|
49 |
+
y_pred = y_pred @ mlp[l][0].T + mlp[l][1]
|
50 |
+
|
51 |
+
if l in [num_layers-1]:
|
52 |
+
y_pred = np.concatenate((inp,y_pred), axis=-1)
|
53 |
+
|
54 |
+
if l != num_layers:
|
55 |
+
for r in res:
|
56 |
+
y_pred += r
|
57 |
+
|
58 |
+
y_pred = selu(y_pred)
|
59 |
+
res.append(y_pred)
|
60 |
+
|
61 |
+
y_pred = y_pred.reshape(num_sims, num_points)
|
62 |
+
y_pred[:,0] = 1.
|
63 |
+
y_pred[:,-1] = 0.
|
64 |
+
|
65 |
+
return y_pred
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
README.md
CHANGED
@@ -1,13 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
sdk_version: 1.35.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
This respository contains trained neural networks that can be used to predict the steady-state temperature profile.
|
2 |
+
|
3 |
+
Step 1: Define the simulation parameters
|
4 |
+
Step 2: The output is as follows
|
5 |
+
- the depth profile (first column) and the temperature profile (second column)
|
6 |
+
- corresonding plot of the temperature profile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,10 +1,59 @@
|
|
1 |
import streamlit as st
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
st.write("
|
8 |
|
9 |
-
|
10 |
-
st.write("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
+
from utils import *
|
5 |
+
import warnings
|
6 |
|
7 |
+
raq_ra = st.number_input("# raq/ra ", value=None, placeholder="betweel 0 and 10")
|
8 |
+
st.write("raq/ra = ", raq_ra)
|
9 |
|
10 |
+
fkt = st.number_input("# FKT ", value=None, placeholder="betweel 1e+6 and 1e+10")
|
11 |
+
st.write("FKT = ", fkt)
|
12 |
+
|
13 |
+
fkv = st.number_input("# FKV ", value=None, placeholder="betweel 0 and 100")
|
14 |
+
st.write("FKV = ", fkv)
|
15 |
+
|
16 |
+
num_points = st.number_input("# number of profile points ", value=None, placeholder=" e.g. 128")
|
17 |
+
st.write("number of profile points = ", num_points)
|
18 |
+
|
19 |
+
with open('numpy_networks/mlp_[256, 256, 256, 256].pkl', 'rb') as file:
|
20 |
+
mlp = pickle.load(file)
|
21 |
+
|
22 |
+
r_list = [raq_ra]
|
23 |
+
t_list = [fkt]
|
24 |
+
v_list = [fkv]
|
25 |
+
|
26 |
+
for i in range(len(r_list)):
|
27 |
+
if r_list[i]<0 or r_list[i]>9.5:
|
28 |
+
warnings.warn('RaQ/Ra is outside the range of the training dataset')
|
29 |
+
if t_list[i]<1e+6 or t_list[i]>5e+9:
|
30 |
+
warnings.warn('FKT is outside the range of the training dataset')
|
31 |
+
if v_list[i]<1 or v_list[i]>95:
|
32 |
+
warnings.warn('FKV is outside the range of the training dataset')
|
33 |
+
|
34 |
+
y_prof = np.linspace(0,1,num_points)[::-1]
|
35 |
+
|
36 |
+
### calculates temperature profile ###
|
37 |
+
x_in = get_input(r_list, t_list, v_list, y_prof)
|
38 |
+
y_pred_nn_pointwise = get_profile(x_in, mlp, num_sims=len(r_list))
|
39 |
+
### calculates temperature profile ###
|
40 |
+
|
41 |
+
### writes out temperature profile ###
|
42 |
+
st.write("Depth", "Temperature")
|
43 |
+
for i in range(len(r_list)):
|
44 |
+
for j in range(len(y_prof)):
|
45 |
+
st.write(str(y_prof[j]) ," ", str(y_pred_nn_pointwise[i,j]), "\n")
|
46 |
+
### writes out temperature profile ###
|
47 |
+
|
48 |
+
|
49 |
+
### plots temperature profile ###
|
50 |
+
for i in range(len(r_list)):
|
51 |
+
plt.figure()
|
52 |
+
plt.plot(y_pred_nn_pointwise[i,:], y_prof, 'k-', linewidth=3.0, label="pointwise neural network")
|
53 |
+
plt.ylim([1,0])
|
54 |
+
plt.xlabel("Temperature")
|
55 |
+
plt.ylabel("Depth")
|
56 |
+
plt.legend()
|
57 |
+
plt.grid()
|
58 |
+
st.pyplot(fig)
|
59 |
+
### plots temperature profile ###
|
calculate_profiles.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from matplotlib import pyplot as plt
|
2 |
+
from utils import *
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
#### Define outputs ####
|
6 |
+
write_file = True
|
7 |
+
plot_profile = True
|
8 |
+
#### Define outputs ####
|
9 |
+
|
10 |
+
with open('numpy_networks/mlp_[256, 256, 256, 256].pkl', 'rb') as file:
|
11 |
+
mlp = pickle.load(file)
|
12 |
+
|
13 |
+
f_nn = "my_simulation_parameters.txt"
|
14 |
+
with open(f_nn) as fw:
|
15 |
+
lines = fw.readlines()
|
16 |
+
|
17 |
+
for line in lines:
|
18 |
+
l = line.rstrip()
|
19 |
+
if "r_list" in l:
|
20 |
+
if not l[-1] == ",":
|
21 |
+
raise Exception("Ensure there is a comma after last parameter value in " + f_nn)
|
22 |
+
r_list = [float(p) for p in l.split("=")[1].split(",")[:-1]]
|
23 |
+
elif "t_list" in line:
|
24 |
+
if not l[-1] == ",":
|
25 |
+
raise Exception("Ensure there is a comma after last parameter value in " + f_nn)
|
26 |
+
t_list = [float(p) for p in l.split("=")[1].split(",")[:-1]]
|
27 |
+
elif "v_list" in line:
|
28 |
+
if not l[-1] == ",":
|
29 |
+
raise Exception("Ensure there is a comma after last parameter value in " + f_nn)
|
30 |
+
v_list = [float(p) for p in l.split("=")[1].split(",")[:-1]]
|
31 |
+
|
32 |
+
if not len(r_list) == len(v_list) and len(r_list) == len(t_list):
|
33 |
+
raise Exception("Ensure equal number of values for all parameters in " + f_nn)
|
34 |
+
|
35 |
+
for i in range(len(r_list)):
|
36 |
+
if r_list[i]<0 or r_list[i]>9.5:
|
37 |
+
warnings.warn('RaQ/Ra is outside the range of the training dataset')
|
38 |
+
if t_list[i]<1e+6 or t_list[i]>5e+9:
|
39 |
+
warnings.warn('FKT is outside the range of the training dataset')
|
40 |
+
if v_list[i]<1 or v_list[i]>95:
|
41 |
+
warnings.warn('FKV is outside the range of the training dataset')
|
42 |
+
|
43 |
+
### calculates y points ###
|
44 |
+
num_points = 128
|
45 |
+
y_prof = np.linspace(0,1,num_points)[::-1]
|
46 |
+
### calculates y points ###
|
47 |
+
|
48 |
+
|
49 |
+
### calculates temperature profile ###
|
50 |
+
x_in = get_input(r_list, t_list, v_list, y_prof)
|
51 |
+
y_pred_nn_pointwise = get_profile(x_in, mlp, num_sims=len(r_list))
|
52 |
+
### calculates temperature profile ###
|
53 |
+
|
54 |
+
|
55 |
+
### writes out temperature profile ###
|
56 |
+
if write_file:
|
57 |
+
for i in range(len(r_list)):
|
58 |
+
fname = "outputs/profile_raq_ra" + str(r_list[i]) + "_fkt" + str(t_list[i]) + "_fkv" + str(v_list[i])
|
59 |
+
f = open(fname + ".txt", "wb")
|
60 |
+
for j in range(len(y_prof)):
|
61 |
+
f.writelines([str(y_prof[j]).encode('ascii'),
|
62 |
+
" ".encode('ascii'),
|
63 |
+
str(y_pred_nn_pointwise[i,j]).encode('ascii'),
|
64 |
+
"\n".encode('ascii')])
|
65 |
+
f.close()
|
66 |
+
### writes out temperature profile ###
|
67 |
+
|
68 |
+
|
69 |
+
### plots temperature profile ###
|
70 |
+
for i in range(len(r_list)):
|
71 |
+
fname = "outputs/profile_raq_ra" + str(r_list[i]) + "_fkt" + str(t_list[i]) + "_fkv" + str(v_list[i])
|
72 |
+
plt.figure()
|
73 |
+
plt.plot(y_pred_nn_pointwise[i,:], y_prof, 'k-', linewidth=3.0, label="pointwise neural network")
|
74 |
+
plt.ylim([1,0])
|
75 |
+
plt.xlabel("Temperature")
|
76 |
+
plt.ylabel("Depth")
|
77 |
+
plt.legend()
|
78 |
+
plt.grid()
|
79 |
+
plt.savefig(fname + ".png")
|
80 |
+
### plots temperature profile ###
|
inputs/.ipynb_checkpoints/simulations-checkpoint.txt
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---------- ------- ---------- ----------- ------------
|
2 |
+
Simulation Dataset RaQ/Ra FKT FKV
|
3 |
+
0 train 4.21479129 3.01635241 86422511.6
|
4 |
+
1 test 9.51640694 94.18089723 4821329.69
|
5 |
+
2 cv 6.271087 42.76214789 4941931.78
|
6 |
+
3 train 0.44977861 10.12215385 94829681.7
|
7 |
+
4 train 8.36560001 35.73834584 1455479.5
|
8 |
+
5 train 5.67467946 1.64110011 6367690.4
|
9 |
+
6 train 0.70579799 5.84651349 1187881210.0
|
10 |
+
7 train 7.52290158 53.86099519 12388219.2
|
11 |
+
8 train 0.12624371 24.95454721 1318547.97
|
12 |
+
9 train 2.2359818 1.05720485 199740515.0
|
13 |
+
10 train 3.02242373 11.01921145 1640799310.0
|
14 |
+
11 train 6.26027711 4.53218755 366333588.0
|
15 |
+
12 train 4.62259524 11.02248583 427407621.0
|
16 |
+
13 train 1.43277485 24.85716255 12376736.0
|
17 |
+
14 train 7.5645277 4.35148281 401681704.0
|
18 |
+
15 test 6.70361149 73.08858228 6558027490.0
|
19 |
+
16 train 0.40661271 52.21228433 90006820.6
|
20 |
+
17 cv 8.63392765 2.64317264 2187883890.0
|
21 |
+
18 train 3.41552419 53.31843207 73876163.5
|
22 |
+
19 train 8.36636851 1.2217876 20837722.4
|
23 |
+
20 train 3.12477618 1.09223116 804157796.0
|
24 |
+
21 train 6.15233896 45.71924975 106800064.0
|
25 |
+
22 train 2.68648417 25.01160266 452572724.0
|
26 |
+
23 train 5.62854856 16.83603314 55118347.0
|
27 |
+
24 train 1.99522057 50.38927796 11793606.7
|
28 |
+
25 train 8.43504053 1.74586381 72241124.0
|
29 |
+
26 train 0.15682868 3.01303633 48187633.5
|
30 |
+
27 train 5.23937284 18.24324448 232584444.0
|
31 |
+
28 train 6.31543445 10.52630296 14606584.6
|
32 |
+
29 train 1.73038798 2.83393888 16181068.4
|
33 |
+
30 train 8.68359761 16.95695456 378170888.0
|
34 |
+
31 train 3.57184556 11.05039248 1719860.91
|
35 |
+
32 cv 5.76158491 4.53324069 2126761.12
|
36 |
+
33 train 1.70166218 38.34916682 228426072.0
|
37 |
+
34 train 3.30432282 2.89257812 17507664.5
|
38 |
+
35 train 4.5068189 17.86232579 27437525.3
|
39 |
+
36 train 6.23026526 2.72393805 7692784.95
|
40 |
+
37 train 5.51926251 34.72353772 81760879.4
|
41 |
+
38 cv 5.61895019 13.79164313 967450922.0
|
42 |
+
39 cv 1.09103611 91.31624922 1517951.65
|
43 |
+
40 cv 3.54175058 39.71096834 1008157.58
|
44 |
+
41 train 1.92594717 37.01010991 9772036.92
|
45 |
+
42 test 9.70723344 56.28276492 1015330.41
|
46 |
+
43 train 3.08975856 4.57055172 17770265.0
|
47 |
+
44 train 1.38024964 22.65176318 10395536.1
|
48 |
+
45 train 3.75282062 19.97972718 104595781.0
|
49 |
+
46 train 1.22269777 14.27630401 1679205170.0
|
50 |
+
47 train 2.80488044 2.29915349 3593013.29
|
51 |
+
48 train 5.13189578 13.2442949 136549073.0
|
52 |
+
49 train 4.9460591 10.7995829 24287525.2
|
53 |
+
50 train 4.99909724 22.46165834 52737683.8
|
54 |
+
51 train 7.31775345 7.73718569 1020606.79
|
55 |
+
52 train 7.06258578 86.12572482 2224833.68
|
56 |
+
53 train 0.6899426 59.64510385 1932628.07
|
57 |
+
54 train 3.386145 3.55017896 21014570.1
|
58 |
+
55 test 7.38284445 11.66799278 7538933640.0
|
59 |
+
56 train 4.08423546 1.74922806 725904067.0
|
60 |
+
57 cv 2.67362452 26.28214014 51821221.6
|
61 |
+
58 test 2.24712439 98.26613159 129667315.0
|
62 |
+
59 cv 4.44838147 4.03057782 2805039520.0
|
63 |
+
60 cv 2.80942173 10.34159997 284317229.0
|
64 |
+
61 train 7.79341449 2.02389494 698171693.0
|
65 |
+
62 train 2.14158405 1.09767463 214437223.0
|
66 |
+
63 train 1.00672028 1.77203701 2146927190.0
|
67 |
+
64 train 2.75896303 1.01216577 1629808.7
|
68 |
+
65 train 2.31856541 16.92198257 3258621.07
|
69 |
+
66 train 0.51313958 76.60516337 16316079.4
|
70 |
+
67 train 6.91868053 2.29281923 2581835.05
|
71 |
+
68 test 3.19785433 38.51330949 7741416430.0
|
72 |
+
69 test 9.70176645 66.88205995 6742721.02
|
73 |
+
70 train 4.5807426 19.59110792 4389885.79
|
74 |
+
71 train 0.74078406 2.52622848 511362006.0
|
75 |
+
72 train 5.08755399 7.40943107 19058749.0
|
76 |
+
73 train 4.99394988 1.27436515 6085204.83
|
77 |
+
74 train 0.45521012 20.65980997 40770664.9
|
78 |
+
75 train 3.97347544 10.76777553 1610519.78
|
79 |
+
76 cv 6.9980184 85.15026443 85457763.4
|
80 |
+
77 test 9.68233821 2.24352405 9101478.03
|
81 |
+
78 train 3.5983924 59.08511032 513989594.0
|
82 |
+
79 train 1.71516547 5.28981365 2021804.21
|
83 |
+
80 train 8.90619866 92.87866715 842798515.0
|
84 |
+
81 train 2.15518657 34.53441385 142408852.0
|
85 |
+
82 train 4.18290969 40.8230102 5667779.62
|
86 |
+
83 cv 4.40076342 2.60998341 86553821.3
|
87 |
+
84 train 7.923791 2.00903448 7847389.6
|
88 |
+
85 test 9.49745122 96.2027838 64145832.8
|
89 |
+
86 test 3.00577213 1.77607573 6848799970.0
|
90 |
+
87 test 6.43144786 2.80081331 5133341820.0
|
91 |
+
88 train 3.23268188 7.33454372 683657849.0
|
92 |
+
89 train 1.45449431 66.14228054 12661236.2
|
93 |
+
90 train 7.55357502 47.56032424 840358151.0
|
94 |
+
91 train 0.8745516 19.03683004 1348280.14
|
95 |
+
92 cv 2.48944593 64.96293189 1453255.63
|
96 |
+
93 test 3.29462875 23.07376101 7301730590.0
|
97 |
+
94 test 3.08732987 98.35555512 14813542.7
|
98 |
+
95 cv 2.27394372 55.85930328 3949869450.0
|
99 |
+
96 train 2.16161172 11.81239082 465455593.0
|
100 |
+
97 train 7.00771735 4.13900522 1880711.48
|
101 |
+
98 cv 0.526931 16.34974624 24964307.0
|
102 |
+
99 train 1.07206555 2.98839101 211956460.0
|
103 |
+
100 train 6.79733173 2.58574662 475523342.0
|
104 |
+
101 train 5.10030487 4.03819673 1664087320.0
|
105 |
+
102 train 7.46133626 5.88239496 109443847.0
|
106 |
+
103 train 1.31598953 29.4046416 20509114.1
|
107 |
+
104 train 7.67114992 1.7810773 3772943.1
|
108 |
+
105 cv 5.79324631 6.49745687 2011480.87
|
109 |
+
106 train 6.94242801 1.06855549 8393763.9
|
110 |
+
107 train 7.87136172 10.88264954 169155714.0
|
111 |
+
108 train 0.53522819 83.44910045 3944779.68
|
112 |
+
109 train 4.35426606 4.52555225 100728730.0
|
113 |
+
110 train 0.32364009 9.14243349 322819020.0
|
114 |
+
111 train 3.66563052 10.08158087 168383022.0
|
115 |
+
112 test 7.87992683 5.70103793 5860425410.0
|
116 |
+
113 train 0.26710223 3.57980514 3636478.69
|
117 |
+
114 train 2.22284414 1.08850972 10277545.5
|
118 |
+
115 train 0.97760298 1.86846107 103097759.0
|
119 |
+
116 train 2.38140612 32.34044506 3319135.1
|
120 |
+
117 train 9.32155776 9.07025187 231431645.0
|
121 |
+
118 test 9.98475203 20.79358182 5235741.91
|
122 |
+
119 train 8.75081696 28.82373853 1686046950.0
|
123 |
+
120 train 0.80523448 6.37660281 3296282.95
|
124 |
+
121 train 5.3432885 73.14491846 2298401.12
|
125 |
+
122 cv 9.17743012 7.49928359 179784166.0
|
126 |
+
123 train 3.00500403 16.42289134 4046947.23
|
127 |
+
124 train 2.45033082 13.06101342 3027412.85
|
128 |
+
125 train 5.47610781 70.54556374 1311680.04
|
129 |
+
126 train 7.10811033 2.59864226 4812900.22
|
130 |
+
127 test 9.46423039 1.90577479 7513000020.0
|
131 |
+
128 train 2.7278834 5.33062584 495559360.0
|
132 |
+
129 train 7.66466625 3.97436225 8300665.59
|
133 |
+
---------- ------- ---------- ----------- ------------
|
inputs/simulations.txt
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---------- ------- ---------- ------------ -----------
|
2 |
+
Simulation Dataset RaQ/Ra FKT FKV
|
3 |
+
0 train 4.21479129 86422511.6 3.01635241
|
4 |
+
1 test 9.51640694 4821329.69 94.18089723
|
5 |
+
2 cv 6.271087 4941931.78 42.76214789
|
6 |
+
3 train 0.44977861 94829681.7 10.12215385
|
7 |
+
4 train 8.36560001 1455479.5 35.73834584
|
8 |
+
5 train 5.67467946 6367690.4 1.64110011
|
9 |
+
6 train 0.70579799 1187881210.0 5.84651349
|
10 |
+
7 train 7.52290158 12388219.2 53.86099519
|
11 |
+
8 train 0.12624371 1318547.97 24.95454721
|
12 |
+
9 train 2.2359818 199740515.0 1.05720485
|
13 |
+
10 train 3.02242373 1640799310.0 11.01921145
|
14 |
+
11 train 6.26027711 366333588.0 4.53218755
|
15 |
+
12 train 4.62259524 427407621.0 11.02248583
|
16 |
+
13 train 1.43277485 12376736.0 24.85716255
|
17 |
+
14 train 7.5645277 401681704.0 4.35148281
|
18 |
+
15 test 6.70361149 6558027490.0 73.08858228
|
19 |
+
16 train 0.40661271 90006820.6 52.21228433
|
20 |
+
17 cv 8.63392765 2187883890.0 2.64317264
|
21 |
+
18 train 3.41552419 73876163.5 53.31843207
|
22 |
+
19 train 8.36636851 20837722.4 1.2217876
|
23 |
+
20 train 3.12477618 804157796.0 1.09223116
|
24 |
+
21 train 6.15233896 106800064.0 45.71924975
|
25 |
+
22 train 2.68648417 452572724.0 25.01160266
|
26 |
+
23 train 5.62854856 55118347.0 16.83603314
|
27 |
+
24 train 1.99522057 11793606.7 50.38927796
|
28 |
+
25 train 8.43504053 72241124.0 1.74586381
|
29 |
+
26 train 0.15682868 48187633.5 3.01303633
|
30 |
+
27 train 5.23937284 232584444.0 18.24324448
|
31 |
+
28 train 6.31543445 14606584.6 10.52630296
|
32 |
+
29 train 1.73038798 16181068.4 2.83393888
|
33 |
+
30 train 8.68359761 378170888.0 16.95695456
|
34 |
+
31 train 3.57184556 1719860.91 11.05039248
|
35 |
+
32 cv 5.76158491 2126761.12 4.53324069
|
36 |
+
33 train 1.70166218 228426072.0 38.34916682
|
37 |
+
34 train 3.30432282 17507664.5 2.89257812
|
38 |
+
35 train 4.5068189 27437525.3 17.86232579
|
39 |
+
36 train 6.23026526 7692784.95 2.72393805
|
40 |
+
37 train 5.51926251 81760879.4 34.72353772
|
41 |
+
38 cv 5.61895019 967450922.0 13.79164313
|
42 |
+
39 cv 1.09103611 1517951.65 91.31624922
|
43 |
+
40 cv 3.54175058 1008157.58 39.71096834
|
44 |
+
41 train 1.92594717 9772036.92 37.01010991
|
45 |
+
42 test 9.70723344 1015330.41 56.28276492
|
46 |
+
43 train 3.08975856 17770265.0 4.57055172
|
47 |
+
44 train 1.38024964 10395536.1 22.65176318
|
48 |
+
45 train 3.75282062 104595781.0 19.97972718
|
49 |
+
46 train 1.22269777 1679205170.0 14.27630401
|
50 |
+
47 train 2.80488044 3593013.29 2.29915349
|
51 |
+
48 train 5.13189578 136549073.0 13.2442949
|
52 |
+
49 train 4.9460591 24287525.2 10.7995829
|
53 |
+
50 train 4.99909724 52737683.8 22.46165834
|
54 |
+
51 train 7.31775345 1020606.79 7.73718569
|
55 |
+
52 train 7.06258578 2224833.68 86.12572482
|
56 |
+
53 train 0.6899426 1932628.07 59.64510385
|
57 |
+
54 train 3.386145 21014570.1 3.55017896
|
58 |
+
55 test 7.38284445 7538933640.0 11.66799278
|
59 |
+
56 train 4.08423546 725904067.0 1.74922806
|
60 |
+
57 cv 2.67362452 51821221.6 26.28214014
|
61 |
+
58 test 2.24712439 129667315.0 98.26613159
|
62 |
+
59 cv 4.44838147 2805039520.0 4.03057782
|
63 |
+
60 cv 2.80942173 284317229.0 10.34159997
|
64 |
+
61 train 7.79341449 698171693.0 2.02389494
|
65 |
+
62 train 2.14158405 214437223.0 1.09767463
|
66 |
+
63 train 1.00672028 2146927190.0 1.77203701
|
67 |
+
64 train 2.75896303 1629808.7 1.01216577
|
68 |
+
65 train 2.31856541 3258621.07 16.92198257
|
69 |
+
66 train 0.51313958 16316079.4 76.60516337
|
70 |
+
67 train 6.91868053 2581835.05 2.29281923
|
71 |
+
68 test 3.19785433 7741416430.0 38.51330949
|
72 |
+
69 test 9.70176645 6742721.02 66.88205995
|
73 |
+
70 train 4.5807426 4389885.79 19.59110792
|
74 |
+
71 train 0.74078406 511362006.0 2.52622848
|
75 |
+
72 train 5.08755399 19058749.0 7.40943107
|
76 |
+
73 train 4.99394988 6085204.83 1.27436515
|
77 |
+
74 train 0.45521012 40770664.9 20.65980997
|
78 |
+
75 train 3.97347544 1610519.78 10.76777553
|
79 |
+
76 cv 6.9980184 85457763.4 85.15026443
|
80 |
+
77 test 9.68233821 9101478.03 2.24352405
|
81 |
+
78 train 3.5983924 513989594.0 59.08511032
|
82 |
+
79 train 1.71516547 2021804.21 5.28981365
|
83 |
+
80 train 8.90619866 842798515.0 92.87866715
|
84 |
+
81 train 2.15518657 142408852.0 34.53441385
|
85 |
+
82 train 4.18290969 5667779.62 40.8230102
|
86 |
+
83 cv 4.40076342 86553821.3 2.60998341
|
87 |
+
84 train 7.923791 7847389.6 2.00903448
|
88 |
+
85 test 9.49745122 64145832.8 96.2027838
|
89 |
+
86 test 3.00577213 6848799970.0 1.77607573
|
90 |
+
87 test 6.43144786 5133341820.0 2.80081331
|
91 |
+
88 train 3.23268188 683657849.0 7.33454372
|
92 |
+
89 train 1.45449431 12661236.2 66.14228054
|
93 |
+
90 train 7.55357502 840358151.0 47.56032424
|
94 |
+
91 train 0.8745516 1348280.14 19.03683004
|
95 |
+
92 cv 2.48944593 1453255.63 64.96293189
|
96 |
+
93 test 3.29462875 7301730590.0 23.07376101
|
97 |
+
94 test 3.08732987 14813542.7 98.35555512
|
98 |
+
95 cv 2.27394372 3949869450.0 55.85930328
|
99 |
+
96 train 2.16161172 465455593.0 11.81239082
|
100 |
+
97 train 7.00771735 1880711.48 4.13900522
|
101 |
+
98 cv 0.526931 24964307.0 16.34974624
|
102 |
+
99 train 1.07206555 211956460.0 2.98839101
|
103 |
+
100 train 6.79733173 475523342.0 2.58574662
|
104 |
+
101 train 5.10030487 1664087320.0 4.03819673
|
105 |
+
102 train 7.46133626 109443847.0 5.88239496
|
106 |
+
103 train 1.31598953 20509114.1 29.4046416
|
107 |
+
104 train 7.67114992 3772943.1 1.7810773
|
108 |
+
105 cv 5.79324631 2011480.87 6.49745687
|
109 |
+
106 train 6.94242801 8393763.9 1.06855549
|
110 |
+
107 train 7.87136172 169155714.0 10.88264954
|
111 |
+
108 train 0.53522819 3944779.68 83.44910045
|
112 |
+
109 train 4.35426606 100728730.0 4.52555225
|
113 |
+
110 train 0.32364009 322819020.0 9.14243349
|
114 |
+
111 train 3.66563052 168383022.0 10.08158087
|
115 |
+
112 test 7.87992683 5860425410.0 5.70103793
|
116 |
+
113 train 0.26710223 3636478.69 3.57980514
|
117 |
+
114 train 2.22284414 10277545.5 1.08850972
|
118 |
+
115 train 0.97760298 103097759.0 1.86846107
|
119 |
+
116 train 2.38140612 3319135.1 32.34044506
|
120 |
+
117 train 9.32155776 231431645.0 9.07025187
|
121 |
+
118 test 9.98475203 5235741.91 20.79358182
|
122 |
+
119 train 8.75081696 1686046950.0 28.82373853
|
123 |
+
120 train 0.80523448 3296282.95 6.37660281
|
124 |
+
121 train 5.3432885 2298401.12 73.14491846
|
125 |
+
122 cv 9.17743012 179784166.0 7.49928359
|
126 |
+
123 train 3.00500403 4046947.23 16.42289134
|
127 |
+
124 train 2.45033082 3027412.85 13.06101342
|
128 |
+
125 train 5.47610781 1311680.04 70.54556374
|
129 |
+
126 train 7.10811033 4812900.22 2.59864226
|
130 |
+
127 test 9.46423039 7513000020.0 1.90577479
|
131 |
+
128 train 2.7278834 495559360.0 5.33062584
|
132 |
+
129 train 7.66466625 8300665.59 3.97436225
|
133 |
+
---------- ------- ---------- ------------ -----------
|
numpy_networks/mlp_[256, 256, 256, 256].pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:655be8aae8c72cf27ff9de99522941f5d9b3bb8055c79f3d252b99b2995ff1fb
|
3 |
+
size 1583595
|
outputs/.ipynb_checkpoints/profile_raq_ra5.0_fkt100000.0_fkv10.0-checkpoint.txt
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1.0 1.0
|
2 |
+
0.9921259842519685 1.0178024589432006
|
3 |
+
0.984251968503937 1.02419132486311
|
4 |
+
0.9763779527559056 1.0321625073297056
|
5 |
+
0.968503937007874 1.0421713204767553
|
6 |
+
0.9606299212598425 1.0516163062641521
|
7 |
+
0.952755905511811 1.0614091699716657
|
8 |
+
0.9448818897637795 1.0715877577625534
|
9 |
+
0.937007874015748 1.0810735731530021
|
10 |
+
0.9291338582677166 1.089926726337548
|
11 |
+
0.9212598425196851 1.0982001155465002
|
12 |
+
0.9133858267716535 1.1058568867629859
|
13 |
+
0.905511811023622 1.1129892549680713
|
14 |
+
0.8976377952755905 1.1198585877833815
|
15 |
+
0.889763779527559 1.1264196723670623
|
16 |
+
0.8818897637795275 1.132586150591497
|
17 |
+
0.8740157480314961 1.1384566274167192
|
18 |
+
0.8661417322834646 1.1456330495711229
|
19 |
+
0.8582677165354331 1.1523635015752953
|
20 |
+
0.8503937007874016 1.1586039897141758
|
21 |
+
0.84251968503937 1.164203314751497
|
22 |
+
0.8346456692913385 1.1694048936942336
|
23 |
+
0.8267716535433071 1.1742405969709162
|
24 |
+
0.8188976377952756 1.17876629362649
|
25 |
+
0.8110236220472441 1.18299415999214
|
26 |
+
0.8031496062992126 1.1869087505503264
|
27 |
+
0.7952755905511811 1.1905182923886117
|
28 |
+
0.7874015748031495 1.1938298366132871
|
29 |
+
0.7795275590551181 1.1968493236227868
|
30 |
+
0.7716535433070866 1.199608124481236
|
31 |
+
0.7637795275590551 1.2020144235173167
|
32 |
+
0.7559055118110236 1.204030577737787
|
33 |
+
0.7480314960629921 1.2057678448470486
|
34 |
+
0.7401574803149606 1.2072262272213867
|
35 |
+
0.7322834645669292 1.2084063445380056
|
36 |
+
0.7244094488188977 1.2093082547736647
|
37 |
+
0.7165354330708661 1.2099303424100876
|
38 |
+
0.7086614173228346 1.2102700794433012
|
39 |
+
0.7007874015748031 1.2103917008171063
|
40 |
+
0.6929133858267716 1.210251464896192
|
41 |
+
0.6850393700787402 1.2098211885199128
|
42 |
+
0.6771653543307087 1.2089267084950532
|
43 |
+
0.6692913385826772 1.2076845685485764
|
44 |
+
0.6614173228346456 1.206129355332681
|
45 |
+
0.6535433070866141 1.205371680302955
|
46 |
+
0.6456692913385826 1.2049806974748283
|
47 |
+
0.6377952755905512 1.2043954210198335
|
48 |
+
0.6299212598425197 1.2036106204337338
|
49 |
+
0.6220472440944882 1.2026201242791477
|
50 |
+
0.6141732283464567 1.201416745705292
|
51 |
+
0.6062992125984252 1.1999648008867543
|
52 |
+
0.5984251968503937 1.1978809672582558
|
53 |
+
0.5905511811023622 1.1958229061601988
|
54 |
+
0.5826771653543307 1.19378547840869
|
55 |
+
0.5748031496062992 1.1911429438142505
|
56 |
+
0.5669291338582677 1.1881662557479544
|
57 |
+
0.5590551181102362 1.1854410463378466
|
58 |
+
0.5511811023622047 1.1823048964210143
|
59 |
+
0.5433070866141733 1.178876982518623
|
60 |
+
0.5354330708661417 1.1751299194641118
|
61 |
+
0.5275590551181102 1.1710321065675582
|
62 |
+
0.5196850393700787 1.1665436813486774
|
63 |
+
0.5118110236220472 1.1616333192854635
|
64 |
+
0.5039370078740157 1.1562582478198198
|
65 |
+
0.49606299212598426 1.1503703986482516
|
66 |
+
0.4881889763779528 1.1439156304548939
|
67 |
+
0.48031496062992124 1.1368328201979288
|
68 |
+
0.47244094488188976 1.129052797880398
|
69 |
+
0.4645669291338583 1.1205223636539805
|
70 |
+
0.45669291338582674 1.1117314823669315
|
71 |
+
0.44881889763779526 1.102807930274322
|
72 |
+
0.4409448818897638 1.0928255734605004
|
73 |
+
0.4330708661417323 1.0816474431805874
|
74 |
+
0.4251968503937008 1.0708782919973383
|
75 |
+
0.41732283464566927 1.0605856578751718
|
76 |
+
0.4094488188976378 1.049296390847412
|
77 |
+
0.4015748031496063 1.0369421605031424
|
78 |
+
0.39370078740157477 1.0255553010327565
|
79 |
+
0.3858267716535433 1.0128340315070852
|
80 |
+
0.3779527559055118 1.0019086718619157
|
81 |
+
0.3700787401574803 0.9901977470956335
|
82 |
+
0.36220472440944884 0.9766690777548703
|
83 |
+
0.3543307086614173 0.9609864831395294
|
84 |
+
0.3464566929133858 0.9427593339272101
|
85 |
+
0.33858267716535434 0.9216423392280653
|
86 |
+
0.3307086614173228 0.9017482646476044
|
87 |
+
0.3228346456692913 0.8842250257427756
|
88 |
+
0.31496062992125984 0.8691045183639151
|
89 |
+
0.30708661417322836 0.8534496543474743
|
90 |
+
0.2992125984251969 0.8371339522358304
|
91 |
+
0.29133858267716534 0.8201284700467455
|
92 |
+
0.28346456692913385 0.806397780911551
|
93 |
+
0.2755905511811024 0.7931112166023593
|
94 |
+
0.26771653543307083 0.7794296062844782
|
95 |
+
0.25984251968503935 0.7653047810449107
|
96 |
+
0.25196850393700787 0.7506458827692618
|
97 |
+
0.2440944881889764 0.7354059250507149
|
98 |
+
0.23622047244094488 0.7207409819202417
|
99 |
+
0.22834645669291337 0.7064884218371179
|
100 |
+
0.2204724409448819 0.6914737948523322
|
101 |
+
0.2125984251968504 0.6742529297594405
|
102 |
+
0.2047244094488189 0.6543064551474167
|
103 |
+
0.19685039370078738 0.6327049937642623
|
104 |
+
0.1889763779527559 0.6106332087469254
|
105 |
+
0.18110236220472442 0.5903256804560127
|
106 |
+
0.1732283464566929 0.5679499052457502
|
107 |
+
0.1653543307086614 0.5440168042704815
|
108 |
+
0.15748031496062992 0.5181675076528582
|
109 |
+
0.14960629921259844 0.49097526265094993
|
110 |
+
0.14173228346456693 0.4690522939899713
|
111 |
+
0.13385826771653542 0.4467834165720918
|
112 |
+
0.12598425196850394 0.4241461376614992
|
113 |
+
0.11811023622047244 0.401149626112448
|
114 |
+
0.11023622047244094 0.377774600216698
|
115 |
+
0.10236220472440945 0.35399309283800373
|
116 |
+
0.09448818897637795 0.3296930391700775
|
117 |
+
0.08661417322834646 0.304730824684046
|
118 |
+
0.07874015748031496 0.2792811035876094
|
119 |
+
0.07086614173228346 0.2532962702159859
|
120 |
+
0.06299212598425197 0.22674011680482922
|
121 |
+
0.05511811023622047 0.20052832043844745
|
122 |
+
0.047244094488188976 0.176698559684727
|
123 |
+
0.03937007874015748 0.1523331129226084
|
124 |
+
0.031496062992125984 0.1273659753191407
|
125 |
+
0.023622047244094488 0.10175475262612885
|
126 |
+
0.015748031496062992 0.07538511274619461
|
127 |
+
0.007874015748031496 0.04814103197609307
|
128 |
+
0.0 0.0
|
outputs/.ipynb_checkpoints/profile_raq_ra7.5_fkt1000000000.0_fkv25.0-checkpoint.png
ADDED
![]() |
outputs/.ipynb_checkpoints/profile_raq_ra7.5_fkt1000000000.0_fkv25.0-checkpoint.txt
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1.0 1.0
|
2 |
+
0.9921259842519685 0.9950688346403253
|
3 |
+
0.984251968503937 0.9958109333720785
|
4 |
+
0.9763779527559056 0.9962344373154483
|
5 |
+
0.968503937007874 0.9963438127157567
|
6 |
+
0.9606299212598425 0.9961419425701642
|
7 |
+
0.952755905511811 0.9956301997182383
|
8 |
+
0.9448818897637795 0.9948085046842855
|
9 |
+
0.937007874015748 0.9940939520613497
|
10 |
+
0.9291338582677166 0.9946201323314715
|
11 |
+
0.9212598425196851 0.9950150370927474
|
12 |
+
0.9133858267716535 0.9952845790823276
|
13 |
+
0.905511811023622 0.9954341277024014
|
14 |
+
0.8976377952755905 0.9954685574336534
|
15 |
+
0.889763779527559 0.9953230018455609
|
16 |
+
0.8818897637795275 0.9949449242563548
|
17 |
+
0.8740157480314961 0.99448569940869
|
18 |
+
0.8661417322834646 0.9939459441547048
|
19 |
+
0.8582677165354331 0.9933258014056847
|
20 |
+
0.8503937007874016 0.9926260108279151
|
21 |
+
0.84251968503937 0.9918474918186793
|
22 |
+
0.8346456692913385 0.9909907871995196
|
23 |
+
0.8267716535433071 0.9906878114843723
|
24 |
+
0.8188976377952756 0.9906106350029152
|
25 |
+
0.8110236220472441 0.9904939840805035
|
26 |
+
0.8031496062992126 0.9903390537912615
|
27 |
+
0.7952755905511811 0.990146453812062
|
28 |
+
0.7874015748031495 0.9899171435791735
|
29 |
+
0.7795275590551181 0.9896528927122547
|
30 |
+
0.7716535433070866 0.9893547314976728
|
31 |
+
0.7637795275590551 0.9890612122526262
|
32 |
+
0.7559055118110236 0.9893196595812495
|
33 |
+
0.7480314960629921 0.9895564211609327
|
34 |
+
0.7401574803149606 0.989772442085792
|
35 |
+
0.7322834645669292 0.9899686248562548
|
36 |
+
0.7244094488188977 0.9901458299221866
|
37 |
+
0.7165354330708661 0.9903048761979846
|
38 |
+
0.7086614173228346 0.990446541534676
|
39 |
+
0.7007874015748031 0.9905715631213701
|
40 |
+
0.6929133858267716 0.9906806328494628
|
41 |
+
0.6850393700787402 0.9907736704034982
|
42 |
+
0.6771653543307087 0.9908520347002285
|
43 |
+
0.6692913385826772 0.990916300999504
|
44 |
+
0.6614173228346456 0.9909670048852377
|
45 |
+
0.6535433070866141 0.9910046409314675
|
46 |
+
0.6456692913385826 0.9910506796923337
|
47 |
+
0.6377952755905512 0.9910935873624599
|
48 |
+
0.6299212598425197 0.9911256000361585
|
49 |
+
0.6220472440944882 0.9911424770684899
|
50 |
+
0.6141732283464567 0.9911429480301582
|
51 |
+
0.6062992125984252 0.991133661750414
|
52 |
+
0.5984251968503937 0.9911148755527556
|
53 |
+
0.5905511811023622 0.9910868001204874
|
54 |
+
0.5826771653543307 0.9910482981983292
|
55 |
+
0.5748031496062992 0.9909960481561243
|
56 |
+
0.5669291338582677 0.9909313899110497
|
57 |
+
0.5590551181102362 0.9908529573606984
|
58 |
+
0.5511811023622047 0.990802994004299
|
59 |
+
0.5433070866141733 0.9907689107593368
|
60 |
+
0.5354330708661417 0.9907286385148512
|
61 |
+
0.5275590551181102 0.9906821287132976
|
62 |
+
0.5196850393700787 0.9906292710827063
|
63 |
+
0.5118110236220472 0.9905698879237498
|
64 |
+
0.5039370078740157 0.9905037276030212
|
65 |
+
0.49606299212598426 0.9903512862004434
|
66 |
+
0.4881889763779528 0.9901705111090647
|
67 |
+
0.48031496062992124 0.990394105267406
|
68 |
+
0.47244094488188976 0.9907094238367197
|
69 |
+
0.4645669291338583 0.9910166209293753
|
70 |
+
0.45669291338582674 0.9913148228031922
|
71 |
+
0.44881889763779526 0.991603010351046
|
72 |
+
0.4409448818897638 0.9918800018564412
|
73 |
+
0.4330708661417323 0.9920970234152766
|
74 |
+
0.4251968503937008 0.9926663730962876
|
75 |
+
0.41732283464566927 0.9934669371102811
|
76 |
+
0.4094488188976378 0.9942288729603758
|
77 |
+
0.4015748031496063 0.9949423232342525
|
78 |
+
0.39370078740157477 0.9956252947243415
|
79 |
+
0.3858267716535433 0.9962590339323164
|
80 |
+
0.3779527559055118 0.9967479593090736
|
81 |
+
0.3700787401574803 0.9971294513207575
|
82 |
+
0.36220472440944884 0.9974497813570239
|
83 |
+
0.3543307086614173 0.9977023709739241
|
84 |
+
0.3464566929133858 0.9978637868769807
|
85 |
+
0.33858267716535434 0.9978957472618809
|
86 |
+
0.3307086614173228 0.9978327829053294
|
87 |
+
0.3228346456692913 0.9976642055670972
|
88 |
+
0.31496062992125984 0.9973751632626285
|
89 |
+
0.30708661417322836 0.9969521187285088
|
90 |
+
0.2992125984251969 0.9967668271065058
|
91 |
+
0.29133858267716534 0.996799932369035
|
92 |
+
0.28346456692913385 0.99663553290747
|
93 |
+
0.2755905511811024 0.9962471955509634
|
94 |
+
0.26771653543307083 0.9957151691949947
|
95 |
+
0.25984251968503935 0.9949376720774421
|
96 |
+
0.25196850393700787 0.9948204261550649
|
97 |
+
0.2440944881889764 0.9944991487665473
|
98 |
+
0.23622047244094488 0.9939093942741223
|
99 |
+
0.22834645669291337 0.9949612343773557
|
100 |
+
0.2204724409448819 0.9958097897762018
|
101 |
+
0.2125984251968504 0.9958570680839077
|
102 |
+
0.2047244094488189 0.9950326535250745
|
103 |
+
0.19685039370078738 0.993269657110815
|
104 |
+
0.1889763779527559 0.9904943987782671
|
105 |
+
0.18110236220472442 0.9866067651892468
|
106 |
+
0.1732283464566929 0.9814501496109934
|
107 |
+
0.1653543307086614 0.9725284162704944
|
108 |
+
0.15748031496062992 0.960591955881983
|
109 |
+
0.14960629921259844 0.9459049031998263
|
110 |
+
0.14173228346456693 0.9274022536864276
|
111 |
+
0.13385826771653542 0.9055608536874807
|
112 |
+
0.12598425196850394 0.8794161299393387
|
113 |
+
0.11811023622047244 0.8483762304671509
|
114 |
+
0.11023622047244094 0.8119839698697441
|
115 |
+
0.10236220472440945 0.7693537351714411
|
116 |
+
0.09448818897637795 0.7193951419727576
|
117 |
+
0.08661417322834646 0.6644998392322397
|
118 |
+
0.07874015748031496 0.6072823940873321
|
119 |
+
0.07086614173228346 0.5458252537723316
|
120 |
+
0.06299212598425197 0.4825227176208522
|
121 |
+
0.05511811023622047 0.419475266210097
|
122 |
+
0.047244094488188976 0.3521553434788696
|
123 |
+
0.03937007874015748 0.2945246014638161
|
124 |
+
0.031496062992125984 0.23725826815687479
|
125 |
+
0.023622047244094488 0.17699945091965216
|
126 |
+
0.015748031496062992 0.11634573154412606
|
127 |
+
0.007874015748031496 0.0546717664461345
|
128 |
+
0.0 0.0
|
stats/.ipynb_checkpoints/MLP_stats-checkpoint.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
------------ --------- ------- ------- ---------
|
2 |
+
architecture mae train mae cv diff diff + cv
|
3 |
+
[32, 2] 0.01158 0.01249 0.00091 0.01294
|
4 |
+
[64, 2] 0.01077 0.01379 0.00302 0.0153
|
5 |
+
[128, 2] 0.00997 0.01177 0.00179 0.01266
|
6 |
+
[256, 2] 0.01 0.01226 0.00226 0.01339
|
7 |
+
[32, 3] 0.00922 0.01167 0.00245 0.01289
|
8 |
+
[64, 3] 0.00878 0.01149 0.00271 0.01284
|
9 |
+
[128, 3] 0.00834 0.01009 0.00175 0.01097
|
10 |
+
[256, 3] 0.0082 0.00927 0.00108 0.00981
|
11 |
+
[32, 4] 0.00797 0.00915 0.00118 0.00974
|
12 |
+
[64, 4] 0.00652 0.00821 0.00169 0.00905
|
13 |
+
[128, 4] 0.00592 0.0083 0.00237 0.00948
|
14 |
+
[256, 4] 0.00681 0.00794 0.00113 [4m0.0085[0m[0m
|
15 |
+
[32, 5] 0.00877 0.01209 0.00332 0.01375
|
16 |
+
[64, 5] 0.00584 0.0084 0.00256 0.00968
|
17 |
+
[128, 5] 0.00608 0.00857 0.00249 0.00981
|
18 |
+
[256, 5] 0.00682 0.00814 0.00133 0.00881
|
19 |
+
[32, 6] 0.00799 0.01453 0.00654 0.0178
|
20 |
+
[64, 6] 0.0118 0.01206 0.00026 0.01219
|
21 |
+
[128, 6] 0.00607 0.00949 0.00342 0.0112
|
22 |
+
[256, 6] 0.00738 0.01015 0.00277 0.01153
|
23 |
+
------------ --------- ------- ------- ---------
|
stats/.ipynb_checkpoints/overall_stats-checkpoint.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
----------------------- ------ ------ ------
|
2 |
+
Mean Absolute Error
|
3 |
+
|
4 |
+
Algorithm train cv test
|
5 |
+
Linear Regression 0.0385 0.0388 0.0676
|
6 |
+
Kernel Ridge Regression 0.0148 0.0147 0.0371
|
7 |
+
Neural Network 0.0071 0.0071 0.0187
|
8 |
+
Nearest neighbor 0.0 0.0282 0.0495
|
9 |
+
----------------------- ------ ------ ------
|
stats/.ipynb_checkpoints/profiles_cv-checkpoint.pdf
ADDED
Binary file (38.8 kB). View file
|
|
stats/.ipynb_checkpoints/profiles_test-checkpoint.pdf
ADDED
Binary file (39.5 kB). View file
|
|
stats/MLP_stats.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
------------ --------- ------- ------- ---------
|
2 |
+
architecture mae train mae cv diff diff + cv
|
3 |
+
[32, 2] 0.01158 0.01249 0.00091 0.01294
|
4 |
+
[64, 2] 0.01077 0.01379 0.00302 0.0153
|
5 |
+
[128, 2] 0.00997 0.01177 0.00179 0.01266
|
6 |
+
[256, 2] 0.01 0.01226 0.00226 0.01339
|
7 |
+
[32, 3] 0.00922 0.01167 0.00245 0.01289
|
8 |
+
[64, 3] 0.00878 0.01149 0.00271 0.01284
|
9 |
+
[128, 3] 0.00834 0.01009 0.00175 0.01097
|
10 |
+
[256, 3] 0.0082 0.00927 0.00108 0.00981
|
11 |
+
[32, 4] 0.00797 0.00915 0.00118 0.00974
|
12 |
+
[64, 4] 0.00652 0.00821 0.00169 0.00905
|
13 |
+
[128, 4] 0.00592 0.0083 0.00237 0.00948
|
14 |
+
[256, 4] 0.00681 0.00794 0.00113 0.0085
|
15 |
+
[32, 5] 0.00877 0.01209 0.00332 0.01375
|
16 |
+
[64, 5] 0.00584 0.0084 0.00256 0.00968
|
17 |
+
[128, 5] 0.00608 0.00857 0.00249 0.00981
|
18 |
+
[256, 5] 0.00682 0.00814 0.00133 0.00881
|
19 |
+
[32, 6] 0.00799 0.01453 0.00654 0.0178
|
20 |
+
[64, 6] 0.0118 0.01206 0.00026 0.01219
|
21 |
+
[128, 6] 0.00607 0.00949 0.00342 0.0112
|
22 |
+
[256, 6] 0.00738 0.01015 0.00277 0.01153
|
23 |
+
------------ --------- ------- ------- ---------
|
stats/MLP_stats_modes.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
------------ --------- ------- -------- ---------
|
2 |
+
architecture mae train mae cv diff diff + cv
|
3 |
+
[32, 2] 0.08696 0.06601 -0.02095 0.05554
|
4 |
+
[64, 2] 0.08639 0.06642 -0.01996 0.05644
|
5 |
+
[128, 2] 0.09331 0.06741 -0.02589 0.05447
|
6 |
+
[256, 2] 0.08665 0.06687 -0.01978 0.05698
|
7 |
+
[32, 3] 0.09488 0.06788 -0.02699 0.05439
|
8 |
+
[64, 3] 0.07847 0.06889 -0.00958 0.06411
|
9 |
+
[128, 3] 0.07296 0.07038 -0.00258 0.0691
|
10 |
+
[256, 3] 0.07649 0.06953 -0.00696 0.06604
|
11 |
+
[32, 4] 0.08799 0.06886 -0.01913 0.0593
|
12 |
+
[64, 4] 0.08595 0.0706 -0.01535 0.06293
|
13 |
+
[128, 4] 0.0852 0.07315 -0.01205 0.06713
|
14 |
+
[256, 4] 0.09259 0.07169 -0.0209 0.06124
|
15 |
+
[32, 5] 0.08676 0.06701 -0.01975 0.05713
|
16 |
+
[64, 5] 0.07997 0.07123 -0.00874 0.06687
|
17 |
+
[128, 5] 0.07262 0.07217 -0.00045 0.07195
|
18 |
+
[256, 5] 0.08688 0.07142 -0.01546 0.0637
|
19 |
+
[32, 6] 0.08931 0.069 -0.02031 0.05884
|
20 |
+
[64, 6] 0.08923 0.07369 -0.01554 0.06592
|
21 |
+
[128, 6] 0.09521 0.07428 -0.02094 0.06381
|
22 |
+
[256, 6] 0.08294 0.07244 -0.01051 0.06718
|
23 |
+
------------ --------- ------- -------- ---------
|
stats/overall_stats.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
----------------------- ------ ------ ------
|
2 |
+
Mean Absolute Error
|
3 |
+
|
4 |
+
Algorithm train cv test
|
5 |
+
Linear Regression 0.0385 0.0388 0.0676
|
6 |
+
Kernel Ridge Regression 0.0148 0.0147 0.0371
|
7 |
+
Neural Network 0.0071 0.0071 0.0187
|
8 |
+
Nearest neighbor 0.0 0.0282 0.0495
|
9 |
+
----------------------- ------ ------ ------
|
stats/overall_stats_modes.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
----------------------- ------ ------ ------
|
2 |
+
Mean Absolute Error
|
3 |
+
|
4 |
+
Algorithm train cv test
|
5 |
+
Linear Regression 0.1037 0.1048 0.1418
|
6 |
+
Kernel Ridge Regression 0.0906 0.1138 0.1646
|
7 |
+
Neural Network 0.0916 0.1036 0.1461
|
8 |
+
Nearest neighbor 0.0 0.1304 0.1643
|
9 |
+
----------------------- ------ ------ ------
|
utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
def selu(x):
|
5 |
+
alpha = 1.6732632423543772848170429916717
|
6 |
+
scale = 1.0507009873554804934193349852946
|
7 |
+
return scale*( np.maximum(0,x) + np.minimum(alpha*(np.exp(x)-1), 0) )
|
8 |
+
|
9 |
+
def non_dimensionalize_raq(x):
|
10 |
+
return (x-0.12624371)/(9.70723344-0.12624371)
|
11 |
+
|
12 |
+
def non_dimensionalize_fkt(x):
|
13 |
+
return (np.log10(x)-6.00352841978384)/(9.888820429862925-6.00352841978384)
|
14 |
+
|
15 |
+
def non_dimensionalize_fkv(x):
|
16 |
+
return (np.log10(x)-0.005251646002323797)/(1.9927988938926755-0.005251646002323797)
|
17 |
+
|
18 |
+
def dimensionalize_raq(x):
|
19 |
+
return x*(9.70723344-0.12624371) + 0.12624371
|
20 |
+
|
21 |
+
def dimensionalize_fkt(x):
|
22 |
+
return 10**(x*(9.888820429862925-6.00352841978384)+6.00352841978384)
|
23 |
+
|
24 |
+
def dimensionalize_fkv(x):
|
25 |
+
return 10**(x*(1.9927988938926755-0.005251646002323797)+0.005251646002323797)
|
26 |
+
|
27 |
+
def get_input(raq_ra, fkt, fkp, y_prof):
|
28 |
+
|
29 |
+
x = np.zeros((len(raq_ra)*len(y_prof), 4))
|
30 |
+
|
31 |
+
cntr = 0
|
32 |
+
for i in range(len(raq_ra)):
|
33 |
+
for j in range(len(y_prof)):
|
34 |
+
x[cntr,0] = non_dimensionalize_raq(raq_ra[i])
|
35 |
+
x[cntr,1] = non_dimensionalize_fkt(fkt[i])
|
36 |
+
x[cntr,2] = non_dimensionalize_fkv(fkp[i])
|
37 |
+
x[cntr,3] = y_prof[j]
|
38 |
+
cntr += 1
|
39 |
+
|
40 |
+
return x
|
41 |
+
|
42 |
+
def get_profile(inp, mlp, num_sims=1, num_points=128):
|
43 |
+
|
44 |
+
num_layers = len(mlp)-1
|
45 |
+
y_pred = inp
|
46 |
+
res = []
|
47 |
+
for l in range(num_layers+1):
|
48 |
+
|
49 |
+
y_pred = y_pred @ mlp[l][0].T + mlp[l][1]
|
50 |
+
|
51 |
+
if l in [num_layers-1]:
|
52 |
+
y_pred = np.concatenate((inp,y_pred), axis=-1)
|
53 |
+
|
54 |
+
if l != num_layers:
|
55 |
+
for r in res:
|
56 |
+
y_pred += r
|
57 |
+
|
58 |
+
y_pred = selu(y_pred)
|
59 |
+
res.append(y_pred)
|
60 |
+
|
61 |
+
y_pred = y_pred.reshape(num_sims, num_points)
|
62 |
+
y_pred[:,0] = 1.
|
63 |
+
y_pred[:,-1] = 0.
|
64 |
+
|
65 |
+
return y_pred
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|