Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import chromadb
|
6 |
+
from chromadb.utils import embedding_functions
|
7 |
+
import openai
|
8 |
+
|
9 |
+
# Load GROQ API Key
|
10 |
+
openai.api_key = os.getenv("GROQ_API_KEY")
|
11 |
+
openai.api_base = "https://api.groq.com/openai/v1"
|
12 |
+
|
13 |
+
# Load embedding model
|
14 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
15 |
+
|
16 |
+
# Set up ChromaDB with persistence
|
17 |
+
persist_path = "./chroma_db"
|
18 |
+
db = chromadb.Client(chromadb.config.Settings(persist_directory=persist_path))
|
19 |
+
collection = db.get_or_create_collection("papers")
|
20 |
+
|
21 |
+
# Extract text from uploaded PDF
|
22 |
+
def extract_text_from_pdf(file):
|
23 |
+
text = ""
|
24 |
+
doc = fitz.open(stream=file.read(), filetype="pdf")
|
25 |
+
for page in doc:
|
26 |
+
text += page.get_text()
|
27 |
+
return text
|
28 |
+
|
29 |
+
# Chunk and store in vector DB
|
30 |
+
def chunk_and_store(text):
|
31 |
+
chunks = [text[i:i+500] for i in range(0, len(text), 500)]
|
32 |
+
embeddings = embedder.encode(chunks).tolist()
|
33 |
+
|
34 |
+
for i, chunk in enumerate(chunks):
|
35 |
+
collection.add(documents=[chunk], ids=[f"id_{len(collection.get()['ids']) + i}"], embeddings=[embeddings[i]])
|
36 |
+
db.persist()
|
37 |
+
|
38 |
+
# Retrieve relevant chunks and send to LLaMA3 via Groq
|
39 |
+
def retrieve_and_ask(query):
|
40 |
+
if len(collection.get()["documents"]) == 0:
|
41 |
+
return "Please upload a paper first."
|
42 |
+
|
43 |
+
query_embedding = embedder.encode([query]).tolist()[0]
|
44 |
+
results = collection.query(query_embeddings=[query_embedding], n_results=3)
|
45 |
+
context = "\n".join(results["documents"][0])
|
46 |
+
|
47 |
+
system_prompt = "You are an academic assistant helping students understand research papers."
|
48 |
+
user_prompt = f"Based on the following context:\n{context}\n\nAnswer the question:\n{query}"
|
49 |
+
|
50 |
+
try:
|
51 |
+
response = openai.ChatCompletion.create(
|
52 |
+
model="llama3-70b-8192",
|
53 |
+
messages=[
|
54 |
+
{"role": "system", "content": system_prompt},
|
55 |
+
{"role": "user", "content": user_prompt}
|
56 |
+
]
|
57 |
+
)
|
58 |
+
return response['choices'][0]['message']['content']
|
59 |
+
except Exception as e:
|
60 |
+
return f"Error: {str(e)}"
|
61 |
+
|
62 |
+
# Gradio UI
|
63 |
+
def handle_upload(file):
|
64 |
+
if file is None:
|
65 |
+
return "Upload a valid PDF file."
|
66 |
+
text = extract_text_from_pdf(file)
|
67 |
+
chunk_and_store(text)
|
68 |
+
return "✅ Paper uploaded and processed."
|
69 |
+
|
70 |
+
def handle_query(query):
|
71 |
+
return retrieve_and_ask(query)
|
72 |
+
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
gr.Markdown("### 📘 RAG Academic Assistant\nUpload a paper and ask questions.")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
file = gr.File(label="Upload PDF", type="binary")
|
78 |
+
upload_btn = gr.Button("Process")
|
79 |
+
upload_output = gr.Textbox()
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
query = gr.Textbox(label="Ask a question")
|
83 |
+
response = gr.Textbox(label="Answer")
|
84 |
+
ask_btn = gr.Button("Ask")
|
85 |
+
|
86 |
+
upload_btn.click(handle_upload, inputs=[file], outputs=[upload_output])
|
87 |
+
ask_btn.click(handle_query, inputs=[query], outputs=[response])
|
88 |
+
|
89 |
+
demo.launch()
|