Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
import spaces
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
|
| 6 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 7 |
# True
|
|
@@ -120,6 +121,7 @@ model = AutoModelForCausalLM.from_pretrained("gpt2")
|
|
| 120 |
|
| 121 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 122 |
print("Loading finished.")
|
|
|
|
| 123 |
def generate_html(token, node):
|
| 124 |
"""Recursively generate HTML for the tree."""
|
| 125 |
|
|
@@ -220,8 +222,6 @@ def get_tables(input_text, number_steps, number_beams):
|
|
| 220 |
)
|
| 221 |
return tables
|
| 222 |
|
| 223 |
-
import gradio as gr
|
| 224 |
-
|
| 225 |
with gr.Blocks(
|
| 226 |
theme=gr.themes.Soft(
|
| 227 |
text_size="lg", font=["monospace"], primary_hue=gr.themes.colors.green
|
|
|
|
| 2 |
import spaces
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
|
| 7 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 8 |
# True
|
|
|
|
| 121 |
|
| 122 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 123 |
print("Loading finished.")
|
| 124 |
+
|
| 125 |
def generate_html(token, node):
|
| 126 |
"""Recursively generate HTML for the tree."""
|
| 127 |
|
|
|
|
| 222 |
)
|
| 223 |
return tables
|
| 224 |
|
|
|
|
|
|
|
| 225 |
with gr.Blocks(
|
| 226 |
theme=gr.themes.Soft(
|
| 227 |
text_size="lg", font=["monospace"], primary_hue=gr.themes.colors.green
|