Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,28 +4,43 @@ import numpy as np
|
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 8 |
# True
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
| 11 |
|
| 12 |
STYLE = """
|
| 13 |
-
.container {
|
| 14 |
width: 100%;
|
| 15 |
display: grid;
|
| 16 |
align-items: center;
|
| 17 |
margin: 0!important;
|
|
|
|
| 18 |
}
|
| 19 |
.prose ul ul {
|
| 20 |
margin: 0!important;
|
| 21 |
-
font-size:
|
| 22 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
.tree {
|
| 24 |
padding: 0px;
|
| 25 |
margin: 0!important;
|
| 26 |
box-sizing: border-box;
|
| 27 |
-
font-size:
|
| 28 |
width: 100%;
|
|
|
|
| 29 |
height: auto;
|
| 30 |
text-align: center;
|
| 31 |
}
|
|
@@ -34,13 +49,17 @@ STYLE = """
|
|
| 34 |
position: relative;
|
| 35 |
transition: .5s;
|
| 36 |
margin: 0!important;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
}
|
| 38 |
.tree li {
|
| 39 |
display: inline-table;
|
| 40 |
text-align: center;
|
| 41 |
list-style-type: none;
|
| 42 |
position: relative;
|
| 43 |
-
padding: 10px;
|
| 44 |
transition: .5s;
|
| 45 |
}
|
| 46 |
.tree li::before, .tree li::after {
|
|
@@ -88,7 +107,7 @@ STYLE = """
|
|
| 88 |
}
|
| 89 |
.tree li a {
|
| 90 |
border: 1px solid #ccc;
|
| 91 |
-
padding:
|
| 92 |
display: inline-grid;
|
| 93 |
border-radius: 5px;
|
| 94 |
text-decoration-line: none;
|
|
@@ -96,10 +115,8 @@ STYLE = """
|
|
| 96 |
transition: .5s;
|
| 97 |
}
|
| 98 |
.tree li a span {
|
| 99 |
-
border: 1px solid #ccc;
|
| 100 |
-
border-radius: 5px;
|
| 101 |
color: #666;
|
| 102 |
-
padding:
|
| 103 |
font-size: 12px;
|
| 104 |
text-transform: uppercase;
|
| 105 |
letter-spacing: 1px;
|
|
@@ -109,30 +126,26 @@ STYLE = """
|
|
| 109 |
.tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a {
|
| 110 |
background: #c8e4f8;
|
| 111 |
color: #000;
|
| 112 |
-
border: 1px solid #94a0b4;
|
| 113 |
}
|
| 114 |
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
|
| 115 |
border-color: #94a0b4;
|
| 116 |
}
|
|
|
|
|
|
|
|
|
|
| 117 |
"""
|
| 118 |
|
| 119 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 120 |
-
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 121 |
-
|
| 122 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 123 |
-
print("Loading finished.")
|
| 124 |
-
|
| 125 |
|
| 126 |
-
def
|
| 127 |
-
"""Recursively generate HTML for the tree."""
|
| 128 |
|
| 129 |
-
html_content = f" <li> <a href='#'> <span> <b>{token}</b> </span> "
|
| 130 |
-
html_content += node
|
| 131 |
html_content += "</a>"
|
| 132 |
-
if len(node
|
| 133 |
html_content += "<ul> "
|
| 134 |
-
for token, subnode in node
|
| 135 |
-
html_content +=
|
| 136 |
html_content += "</ul>"
|
| 137 |
html_content += "</li>"
|
| 138 |
return html_content
|
|
@@ -144,9 +157,9 @@ def generate_markdown_table(scores, sequence_prob, top_k=4, chosen_tokens=None):
|
|
| 144 |
<tr>
|
| 145 |
<th><b>Token</b></th>
|
| 146 |
<th><b>Step score</b></th>
|
| 147 |
-
<th><b>
|
| 148 |
</tr>"""
|
| 149 |
-
for token_idx in np.argsort(scores)[-top_k:]:
|
| 150 |
token = tokenizer.decode([token_idx])
|
| 151 |
style = ""
|
| 152 |
if chosen_tokens and token in chosen_tokens:
|
|
@@ -162,50 +175,140 @@ def generate_markdown_table(scores, sequence_prob, top_k=4, chosen_tokens=None):
|
|
| 162 |
return markdown_table
|
| 163 |
|
| 164 |
|
| 165 |
-
def
|
| 166 |
-
|
|
|
|
| 167 |
<div class="tree">
|
| 168 |
<ul>"""
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
print(tokenizer.batch_decode(sequences))
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
| 185 |
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
markdown_table = generate_markdown_table(
|
| 188 |
-
step_scores[
|
| 189 |
-
|
|
|
|
| 190 |
)
|
| 191 |
-
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
#
|
| 196 |
-
|
| 197 |
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
@spaces.GPU
|
| 208 |
-
def
|
| 209 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 210 |
|
| 211 |
outputs = model.generate(
|
|
@@ -216,18 +319,18 @@ def get_tables(input_text, number_steps, number_beams):
|
|
| 216 |
return_dict_in_generate=True,
|
| 217 |
output_scores=True,
|
| 218 |
top_k=5,
|
| 219 |
-
|
| 220 |
-
do_sample=True,
|
| 221 |
)
|
| 222 |
-
print(outputs.sequences_scores)
|
| 223 |
|
| 224 |
-
|
| 225 |
input_text,
|
| 226 |
-
outputs.scores,
|
| 227 |
-
outputs.sequences[:,
|
| 228 |
-
outputs.beam_indices[:, :
|
| 229 |
)
|
| 230 |
-
|
|
|
|
|
|
|
| 231 |
|
| 232 |
|
| 233 |
with gr.Blocks(
|
|
@@ -241,6 +344,6 @@ with gr.Blocks(
|
|
| 241 |
beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
|
| 242 |
button = gr.Button()
|
| 243 |
out = gr.Markdown(label="Output")
|
| 244 |
-
button.click(
|
| 245 |
|
| 246 |
demo.launch()
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 9 |
+
|
| 10 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 11 |
+
print("Loading finished.")
|
| 12 |
+
|
| 13 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 14 |
# True
|
| 15 |
if torch.cuda.is_available():
|
| 16 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
| 17 |
|
| 18 |
STYLE = """
|
| 19 |
+
.custom-container {
|
| 20 |
width: 100%;
|
| 21 |
display: grid;
|
| 22 |
align-items: center;
|
| 23 |
margin: 0!important;
|
| 24 |
+
overflow: scroll;
|
| 25 |
}
|
| 26 |
.prose ul ul {
|
| 27 |
margin: 0!important;
|
| 28 |
+
font-size: 10px!important;
|
| 29 |
}
|
| 30 |
+
.prose td, th {
|
| 31 |
+
padding-left: 2px;
|
| 32 |
+
padding-right: 2px;
|
| 33 |
+
padding-top: 0;
|
| 34 |
+
padding-bottom: 0;
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
.tree {
|
| 38 |
padding: 0px;
|
| 39 |
margin: 0!important;
|
| 40 |
box-sizing: border-box;
|
| 41 |
+
font-size: 10px;
|
| 42 |
width: 100%;
|
| 43 |
+
min-width: 2000px;
|
| 44 |
height: auto;
|
| 45 |
text-align: center;
|
| 46 |
}
|
|
|
|
| 49 |
position: relative;
|
| 50 |
transition: .5s;
|
| 51 |
margin: 0!important;
|
| 52 |
+
display: flex;
|
| 53 |
+
flex-direction: row;
|
| 54 |
+
justify-content: center;
|
| 55 |
+
gap:10px;
|
| 56 |
}
|
| 57 |
.tree li {
|
| 58 |
display: inline-table;
|
| 59 |
text-align: center;
|
| 60 |
list-style-type: none;
|
| 61 |
position: relative;
|
| 62 |
+
padding-top: 10px;
|
| 63 |
transition: .5s;
|
| 64 |
}
|
| 65 |
.tree li::before, .tree li::after {
|
|
|
|
| 107 |
}
|
| 108 |
.tree li a {
|
| 109 |
border: 1px solid #ccc;
|
| 110 |
+
padding: 5px;
|
| 111 |
display: inline-grid;
|
| 112 |
border-radius: 5px;
|
| 113 |
text-decoration-line: none;
|
|
|
|
| 115 |
transition: .5s;
|
| 116 |
}
|
| 117 |
.tree li a span {
|
|
|
|
|
|
|
| 118 |
color: #666;
|
| 119 |
+
padding: 5px;
|
| 120 |
font-size: 12px;
|
| 121 |
text-transform: uppercase;
|
| 122 |
letter-spacing: 1px;
|
|
|
|
| 126 |
.tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a {
|
| 127 |
background: #c8e4f8;
|
| 128 |
color: #000;
|
|
|
|
| 129 |
}
|
| 130 |
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
|
| 131 |
border-color: #94a0b4;
|
| 132 |
}
|
| 133 |
+
.chosen {
|
| 134 |
+
background-color: red;
|
| 135 |
+
}
|
| 136 |
"""
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
+
def generate_nodes(token, node):
|
| 140 |
+
"""Recursively generate HTML for the tree nodes."""
|
| 141 |
|
| 142 |
+
html_content = f" <li> <a href='#' class={('chosen' if node.table is None else '')}> <span> <b>{token}</b> </span> "
|
| 143 |
+
html_content += node.table if node.table is not None else ""
|
| 144 |
html_content += "</a>"
|
| 145 |
+
if len(node.children.keys()) > 0:
|
| 146 |
html_content += "<ul> "
|
| 147 |
+
for token, subnode in node.children.items():
|
| 148 |
+
html_content += generate_nodes(token, subnode)
|
| 149 |
html_content += "</ul>"
|
| 150 |
html_content += "</li>"
|
| 151 |
return html_content
|
|
|
|
| 157 |
<tr>
|
| 158 |
<th><b>Token</b></th>
|
| 159 |
<th><b>Step score</b></th>
|
| 160 |
+
<th><b>Total score</b></th>
|
| 161 |
</tr>"""
|
| 162 |
+
for token_idx in np.array(np.argsort(scores)[-top_k:])[::-1]:
|
| 163 |
token = tokenizer.decode([token_idx])
|
| 164 |
style = ""
|
| 165 |
if chosen_tokens and token in chosen_tokens:
|
|
|
|
| 175 |
return markdown_table
|
| 176 |
|
| 177 |
|
| 178 |
+
def generate_html(start_sentence, original_tree):
|
| 179 |
+
|
| 180 |
+
html_output = """<div class="custom-container">
|
| 181 |
<div class="tree">
|
| 182 |
<ul>"""
|
| 183 |
+
html_output += generate_nodes(start_sentence, original_tree)
|
| 184 |
+
|
| 185 |
+
html_output += """
|
| 186 |
+
</ul>
|
| 187 |
+
</div>
|
| 188 |
+
</body>
|
| 189 |
+
"""
|
| 190 |
+
return html_output
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
import pandas as pd
|
| 194 |
+
from typing import Dict
|
| 195 |
+
from dataclasses import dataclass
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
@dataclass
|
| 199 |
+
class BeamNode:
|
| 200 |
+
cumulative_score: float
|
| 201 |
+
table: str
|
| 202 |
+
current_sentence: str
|
| 203 |
+
children: Dict[str, "BeamNode"]
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def generate_beams(start_sentence, scores, sequences, beam_indices):
|
| 207 |
print(tokenizer.batch_decode(sequences))
|
| 208 |
+
sequences = sequences.cpu().numpy()
|
| 209 |
+
original_tree = BeamNode(
|
| 210 |
+
cumulative_score=0, table=None, current_sentence=start_sentence, children={}
|
| 211 |
+
)
|
| 212 |
+
n_beams = len(scores[0])
|
| 213 |
+
beam_trees = [original_tree] * n_beams
|
| 214 |
+
for step, step_scores in enumerate(scores):
|
| 215 |
+
(
|
| 216 |
+
top_token_indexes,
|
| 217 |
+
top_cumulative_scores,
|
| 218 |
+
beam_indexes,
|
| 219 |
+
current_completions,
|
| 220 |
+
top_tokens,
|
| 221 |
+
) = ([], [], [], [], [])
|
| 222 |
+
for beam_ix in range(n_beams):
|
| 223 |
+
current_beam = beam_trees[beam_ix]
|
| 224 |
+
# Get top cumulative scores for the current beam
|
| 225 |
+
current_top_token_indexes = list(
|
| 226 |
+
np.array(scores[step][beam_ix].argsort()[-n_beams:])[::-1]
|
| 227 |
+
)
|
| 228 |
+
top_token_indexes += current_top_token_indexes
|
| 229 |
+
top_cumulative_scores += list(
|
| 230 |
+
np.array(scores[step][beam_ix][current_top_token_indexes])
|
| 231 |
+
+ current_beam.cumulative_score
|
| 232 |
+
)
|
| 233 |
+
beam_indexes += [beam_ix] * n_beams
|
| 234 |
+
current_completions += [beam_trees[beam_ix].current_sentence] * n_beams
|
| 235 |
+
top_tokens += [
|
| 236 |
+
tokenizer.decode([el]) for el in current_top_token_indexes
|
| 237 |
+
]
|
| 238 |
+
|
| 239 |
+
top_df = pd.DataFrame.from_dict(
|
| 240 |
+
{
|
| 241 |
+
"token_index": top_token_indexes,
|
| 242 |
+
"cumulative_score": top_cumulative_scores,
|
| 243 |
+
"beam_index": beam_indexes,
|
| 244 |
+
"current_completions": current_completions,
|
| 245 |
+
"token": top_tokens,
|
| 246 |
+
}
|
| 247 |
+
)
|
| 248 |
+
maxes = top_df.groupby(["token_index", "current_completions"])[
|
| 249 |
+
"cumulative_score"
|
| 250 |
+
].idxmax()
|
| 251 |
+
|
| 252 |
+
top_df = top_df.loc[maxes]
|
| 253 |
|
| 254 |
+
# Sort all top probabilities and keep top n_beams
|
| 255 |
+
top_df_selected = top_df.sort_values("cumulative_score", ascending=False).iloc[
|
| 256 |
+
:n_beams
|
| 257 |
+
]
|
| 258 |
+
print(step)
|
| 259 |
+
display(top_df_selected)
|
| 260 |
|
| 261 |
+
# Write the scores table - one per beam source?
|
| 262 |
+
# Edge case: if several beam indexes are actually on the same beam, the selected tokens by beam_index for the second one will be empty. So we reverse
|
| 263 |
+
for beam_ix in reversed(list(range(n_beams))):
|
| 264 |
+
current_beam = beam_trees[beam_ix]
|
| 265 |
+
selected_tokens = top_df_selected.loc[top_df_selected["beam_index"] == beam_ix]
|
| 266 |
+
print(step, beam_ix)
|
| 267 |
+
display(selected_tokens)
|
| 268 |
markdown_table = generate_markdown_table(
|
| 269 |
+
step_scores[beam_ix, :],
|
| 270 |
+
current_beam.cumulative_score,
|
| 271 |
+
chosen_tokens=list(selected_tokens["token"].values),
|
| 272 |
)
|
| 273 |
+
beam_trees[beam_ix].table = markdown_table
|
| 274 |
|
| 275 |
+
# Add new children for each beam
|
| 276 |
+
cumulative_scores = [beam.cumulative_score for beam in beam_trees]
|
| 277 |
+
for beam_ix in range(n_beams):
|
| 278 |
+
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
|
| 279 |
+
current_token_choice = tokenizer.decode([current_token_choice_ix])
|
| 280 |
|
| 281 |
+
# Update the source tree
|
| 282 |
+
source_beam_ix = int(top_df_selected.iloc[beam_ix]["beam_index"])
|
| 283 |
|
| 284 |
+
previous_len = len(str(original_tree))
|
| 285 |
+
beam_trees[source_beam_ix].children[current_token_choice] = BeamNode(
|
| 286 |
+
table=None,
|
| 287 |
+
children={},
|
| 288 |
+
current_sentence=beam_trees[source_beam_ix].current_sentence
|
| 289 |
+
+ current_token_choice,
|
| 290 |
+
cumulative_score=cumulative_scores[source_beam_ix]
|
| 291 |
+
+ scores[step][source_beam_ix][current_token_choice_ix].numpy(),
|
| 292 |
+
)
|
| 293 |
+
assert (
|
| 294 |
+
len(str(original_tree)) > previous_len
|
| 295 |
+
), "Original tree has not increased size"
|
| 296 |
|
| 297 |
+
# Reassign all beams at once
|
| 298 |
+
beam_trees = [
|
| 299 |
+
beam_trees[int(top_df_selected.iloc[beam_ix]["beam_index"])]
|
| 300 |
+
for beam_ix in range(n_beams)
|
| 301 |
+
]
|
| 302 |
+
|
| 303 |
+
# Advance all beams by one token
|
| 304 |
+
for beam_ix in range(n_beams):
|
| 305 |
+
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
|
| 306 |
+
current_token_choice = tokenizer.decode([current_token_choice_ix])
|
| 307 |
+
beam_trees[beam_ix] = beam_trees[beam_ix].children[current_token_choice]
|
| 308 |
+
return original_tree
|
| 309 |
|
| 310 |
@spaces.GPU
|
| 311 |
+
def get_beam_search_html(input_text, number_steps, number_beams):
|
| 312 |
inputs = tokenizer([input_text], return_tensors="pt")
|
| 313 |
|
| 314 |
outputs = model.generate(
|
|
|
|
| 319 |
return_dict_in_generate=True,
|
| 320 |
output_scores=True,
|
| 321 |
top_k=5,
|
| 322 |
+
do_sample=False,
|
|
|
|
| 323 |
)
|
|
|
|
| 324 |
|
| 325 |
+
original_tree = generate_beams(
|
| 326 |
input_text,
|
| 327 |
+
outputs.scores[:],
|
| 328 |
+
outputs.sequences[:, :],
|
| 329 |
+
outputs.beam_indices[:, :],
|
| 330 |
)
|
| 331 |
+
html = generate_html(input_text, original_tree)
|
| 332 |
+
print(html)
|
| 333 |
+
return html
|
| 334 |
|
| 335 |
|
| 336 |
with gr.Blocks(
|
|
|
|
| 344 |
beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
|
| 345 |
button = gr.Button()
|
| 346 |
out = gr.Markdown(label="Output")
|
| 347 |
+
button.click(get_beam_search_html, inputs=[text, steps, beams], outputs=out)
|
| 348 |
|
| 349 |
demo.launch()
|