AidenTTS / app.py
arnavmehta7's picture
Update app.py
3a0629c verified
raw
history blame
4.41 kB
import gradio as gr
import torch
import librosa
from pathlib import Path
import tempfile, torchaudio
# from faster_whisper import WhisperModel
from transformers import pipeline
from uuid import uuid4
# Load the MARS5 model
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
# asr_model = WhisperModel("small", device="cpu", compute_type="int8")
asr_model = pipeline(
"automatic-speech-recognition",
model="openai/whisper-medium",
chunk_length_s=30,
device=torch.device("cuda"),
)
def transcribe_file(f: str) -> str:
predictions = asr_model(f, return_timestamps=True)["chunks"]
print(f">>>>>. predictions: {predictions}")
return " ".join([prediction["text"] for prediction in predictions])
# Function to process the text and audio input and generate the synthesized output
def synthesize(text, audio_file, transcript):
audio_file = Path(audio_file)
temp_file = f"{uuid4()}.{audio_file.suffix}"
# copying the audio_file
with open(audio_file, 'rb') as src, open(temp_file, 'wb') as dst:
dst.write(src.read())
audio_file = temp_file
print(f">>>>> synthesizing! audio_file: {audio_file}")
if not transcript:
transcript = transcribe_file(audio_file)
# Load the reference audio
wav, sr = librosa.load(audio_file, sr=mars5.sr, mono=True)
wav = torch.from_numpy(wav)
# Define the configuration for the TTS model
deep_clone = True
cfg = config_class(deep_clone=deep_clone, rep_penalty_window=100, top_k=100, temperature=0.7, freq_penalty=3)
# Generate the synthesized audio
ar_codes, wav_out = mars5.tts(text, wav, transcript, cfg=cfg)
# Save the synthesized audio to a temporary file
output_path = Path(tempfile.mktemp(suffix=".wav"))
torchaudio.save(output_path, wav_out.unsqueeze(0), mars5.sr)
return str(output_path)
defaults = {
'temperature': 0.8,
'top_k': -1,
'top_p': 0.2,
'typical_p': 1.0,
'freq_penalty': 2.6,
'presence_penalty': 0.4,
'rep_penalty_window': 100,
'max_prompt_phones': 360,
'deep_clone': True,
'nar_guidance_w': 3
}
with gr.Blocks() as demo:
gr.Markdown("## MARS5 TTS Demo\nEnter text and upload an audio file to clone the voice and generate synthesized speech using MARS5 TTS.")
text = gr.Textbox(label="Text to synthesize")
audio_file = gr.Audio(label="Audio file to clone from", type="filepath")
generate_btn = gr.Button(label="Generate Synthesized Audio")
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown("additional inference settings\nWARNING: changing these incorrectly may degrade quality.")
prompt_text = gr.Textbox(label="Transcript of voice reference")
temperature = gr.Slider(minimum=0.01, maximum=3, step=0.01, label="temperature", value=defaults['temperature'])
top_k = gr.Slider(minimum=-1, maximum=2000, step=1, label="top_k", value=defaults['top_k'])
top_p = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, label="top_p", value=defaults['top_p'])
typical_p = gr.Slider(minimum=0.01, maximum=1, step=0.01, label="typical_p", value=defaults['typical_p'])
freq_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="freq_penalty", value=defaults['freq_penalty'])
presence_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="presence_penalty", value=defaults['presence_penalty'])
rep_penalty_window = gr.Slider(minimum=1, maximum=500, step=1, label="rep_penalty_window", value=defaults['rep_penalty_window'])
nar_guidance_w = gr.Slider(minimum=1, maximum=8, step=0.1, label="nar_guidance_w", value=defaults['nar_guidance_w'])
meta_n = gr.Slider(minimum=1, maximum=10, step=1, label="meta_n", value=2, interactive=False)
deep_clone = gr.Checkbox(value=defaults['deep_clone'], label='deep_clone')
dummy = gr.Number(label='Example number', visible=False)
output = gr.Audio(label="Synthesized Audio", type="filepath")
def on_click(text, audio_file, prompt_text):
print(f">>>> transcript: {prompt_text}; audio_file = {audio_file}")
of = synthesize(text, audio_file, prompt_text)
print(f">>>> output file: {of}")
return of
generate_btn.click(on_click, inputs=[text, audio_file, prompt_text], outputs=[output])
demo.launch(share=False)