|
import os |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
hf_token= os.getenv("access_token") |
|
tokenizer = AutoTokenizer.from_pretrained("afrizalha/Sasando-1-25M", token=hf_token) |
|
tiny = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-25M", token=hf_token) |
|
tinier = AutoModelForCausalLM.from_pretrained("afrizalha/Sasando-1-7M", token=hf_token) |
|
|
|
|
|
desc = """Sasando-1 is a tiny, highly experimental text generator built using the Phi-3 architecture. It comes with two variations of microscopic sizes: 7M and 25M parameters. It is trained on a tightly-controlled Indo4B dataset filtered to only have 18000 unique words. The method is inspired by Microsoft's TinyStories paper which demonstrates that a tiny language model can produce fluent text when trained on tightly-controlled dataset.""" |
|
|
|
def generate(starting_text, choice, num_runs,temp,top_p): |
|
if choice == '7M': |
|
model = tinier |
|
elif choice == '25M': |
|
model = tiny |
|
elif choice == 'Info': |
|
return desc |
|
|
|
results = [] |
|
for i in range(num_runs): |
|
inputs = tokenizer([starting_text], return_tensors="pt").to(model.device) |
|
outputs = model.generate( |
|
inputs=inputs.input_ids, |
|
max_new_tokens=32-len(inputs.input_ids), |
|
do_sample=True, |
|
temperature=temp, |
|
top_p=top_p |
|
) |
|
outputs = tokenizer.batch_decode(outputs,skip_special_tokens=True)[0] |
|
outputs = outputs[:outputs.find(".")] |
|
results.append(outputs) |
|
yield "\n\n".join(results) |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as app: |
|
starting_text = gr.Textbox(label="Starting text", value="cinta adalah") |
|
choice = gr.Radio(["7M", "25M"], label="Model size", info="Built with the Phi-3 architecture") |
|
num_runs = gr.Slider(label="Number of examples", minimum=1, maximum=10, step=1, value=5) |
|
temp = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) |
|
top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.5) |
|
res = gr.Textbox(label="Continuation") |
|
gr.Interface( |
|
fn=generate, |
|
inputs=[starting_text,choice,num_runs,temp,top_p], |
|
outputs=[res], |
|
allow_flagging="never", |
|
title="Sasando-1", |
|
) |
|
examples=gr.Examples([["gue"], ["presiden"], ["cinta adalah"], ["allah, aku"]], [starting_text]) |
|
|
|
app.launch(share=True) |
|
|