pdf / app.py
afkarfcom's picture
Update app.py
76ae2e1 verified
import streamlit as st
from pypdf import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks, openai_api_key, embedding_model):
embeddings = OpenAIEmbeddings(api_key=openai_api_key, model=embedding_model)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore, openai_api_key, chat_model):
llm = ChatOpenAI(api_key=openai_api_key, model=chat_model)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
# Simpan pertanyaan pengguna ke dalam riwayat chat
st.session_state.chat_history.append({"role": "user", "content": user_question})
# Dapatkan respons dari AI
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history.append({"role": "bot", "content": response['answer']})
# Tampilkan semua pesan dalam riwayat chat
for message in st.session_state.chat_history:
if message['role'] == 'user':
st.write(user_template.replace("{{MSG}}", message['content']), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message['content']), unsafe_allow_html=True)
def main():
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key", type="password")
# Pilihan model untuk embeddings
embedding_model_options = [
"text-embedding-3-large",
"text-embedding-3-small",
"text-embedding-ada-002"
]
selected_embedding_model = st.sidebar.selectbox("Select the Embedding Model", embedding_model_options)
# Pilihan model untuk chat
chat_model_options = [
"gpt-4o-mini",
"gpt-3.5-turbo-0125"
]
selected_chat_model = st.sidebar.selectbox("Select the Chat Model", chat_model_options)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
st.header("Chat with multiple PDFs :books:")
st.write("Please enter the data in the menu on the left") # Menambahkan teks di sini
# Menggunakan text_area untuk input pengguna
user_question = st.text_area("Ask a question about your documents:", height=100)
# Menambahkan tombol untuk mengirim pertanyaan
if st.button("Send") and user_question and st.session_state.conversation:
handle_userinput(user_question)
st.session_state.user_question = "" # Mengosongkan input setelah mengirim
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader("Upload your PDFs here", accept_multiple_files=True)
if pdf_docs and openai_api_key:
if st.button("Process PDFs"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks, openai_api_key, selected_embedding_model)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore, openai_api_key, selected_chat_model)
st.success("PDFs processed successfully!")
if __name__ == '__main__':
main()