Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,39 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
st.write("Classification for 6 emotions: sadness, joy, love, anger, fear, surprise")
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
if result['score'] > max_score:
|
| 25 |
-
max_score = result['score']
|
| 26 |
-
max_label = result['label']
|
| 27 |
-
|
| 28 |
-
st.write("Text:", text)
|
| 29 |
-
st.write("Label:", max_label)
|
| 30 |
-
st.write("Score:", max_score)
|
|
|
|
| 1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import torch
|
| 3 |
|
| 4 |
+
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
| 5 |
+
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
| 6 |
+
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
| 7 |
+
emoji_model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
+
emoji_model_id,
|
| 9 |
+
trust_remote_code=True,
|
| 10 |
+
torch_dtype=torch.float16
|
| 11 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
emoji_model.eval()
|
| 13 |
|
| 14 |
+
# ✅ Step 2: 冒犯性文本识别模型
|
| 15 |
+
classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1)
|
|
|
|
| 16 |
|
| 17 |
+
def classify_emoji_text(text: str):
|
| 18 |
+
"""
|
| 19 |
+
Step 1: 翻译文本中的 emoji
|
| 20 |
+
Step 2: 使用分类器判断是否冒犯
|
| 21 |
+
"""
|
| 22 |
+
prompt = f"""请判断下面的文本是否具有冒犯性。
|
| 23 |
+
这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。
|
| 24 |
+
如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。
|
| 25 |
+
文本如下:
|
| 26 |
+
{text}
|
| 27 |
+
"""
|
| 28 |
|
| 29 |
+
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
output_ids = emoji_model.generate(**input_ids, max_new_tokens=50, do_sample=False)
|
| 32 |
+
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 33 |
+
translated_text = decoded.strip().split("文本如下:")[-1].strip()
|
| 34 |
|
| 35 |
+
result = classifier(translated_text)[0]
|
| 36 |
+
label = result["label"]
|
| 37 |
+
score = result["score"]
|
| 38 |
|
| 39 |
+
return translated_text, label, score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|