aeresd's picture
Update app.py
0abac66 verified
import streamlit as st
from transformers import pipeline, AutoTokenizer
import torch
import re
import numpy as np
import soundfile as sf
from PIL import Image
from datasets import load_dataset
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ==================== Model Loading & Caching ====================
@st.cache_resource(show_spinner=False)
def load_models():
"""Preload and cache all AI models"""
logger.info("Loading image captioning model...")
caption_model = pipeline(
task="image-to-text",
model="Salesforce/blip-image-captioning-base",
device=0 if torch.cuda.is_available() else -1
)
logger.info("Loading story generation model...")
story_model = pipeline(
task="text-generation",
model="Tincando/fiction_story_generator",
device=0 if torch.cuda.is_available() else -1,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
)
logger.info("Loading text-to-speech model...")
tts_model = pipeline(
task="text-to-audio",
model="Chan-Y/speecht5_finetuned_tr_commonvoice",
device=0 if torch.cuda.is_available() else -1
)
tts_tokenizer = AutoTokenizer.from_pretrained(
"Chan-Y/speecht5_finetuned_tr_commonvoice"
)
return caption_model, story_model, tts_model, tts_tokenizer
# ==================== Streamlit Page Configuration ====================
st.set_page_config(
page_title="🧸 AI Story Generator Pro",
page_icon="πŸ“–",
layout="wide",
initial_sidebar_state="expanded"
)
# ==================== Sidebar Settings ====================
with st.sidebar:
st.title("βš™οΈ Generation Settings")
temperature = st.slider("Creativity Level", 0.5, 1.5, 0.85, step=0.05)
max_length = st.slider("Story Length", 100, 500, 200)
story_style = st.selectbox("Narrative Style", ["Fairy Tale", "Sci-Fi", "Adventure"])
voice_speed = st.slider("Speech Rate", 0.5, 2.0, 1.0)
# ==================== Main Interface ====================
st.title("πŸ–ΌοΈ AI-Powered Story Generator")
st.write("Transform images into immersive stories with audio narration")
# ==================== File Upload ====================
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
if uploaded_file:
# ==================== Image Display ====================
col1, col2 = st.columns([1, 2])
with col1:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# ==================== Generation Pipeline ====================
if st.button("Generate Story", type="primary"):
try:
progress_bar = st.progress(0)
status_text = st.empty()
# Model Initialization
with st.spinner("πŸ”„ Initializing AI models..."):
caption_model, story_model, tts_model, tts_tokenizer = load_models()
speaker_emb = torch.tensor(
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
).unsqueeze(0)
progress_bar.progress(20)
# Image Captioning
with st.spinner("πŸ“· Analyzing visual content..."):
caption_result = caption_model(image)
caption = caption_result[0]['generated_text']
progress_bar.progress(40)
# Story Generation
with st.spinner("✍️ Crafting narrative..."):
prompt = f"Write a children's story in {story_style} style about: {caption}"
story = story_model(
prompt,
temperature=temperature,
max_length=max_length,
do_sample=True
)[0]['generated_text']
# Ensure proper punctuation
story = re.sub(r'[^.!?]+$', '', story)
progress_bar.progress(70)
# Audio Synthesis
with st.spinner("πŸ”Š Generating narration..."):
chunks = re.split(r'(?<=[.!?]) +', story)
audio_arrays = []
for chunk in chunks:
inputs = tts_tokenizer(chunk, return_tensors="pt")
speech = tts_model(
inputs["input_ids"],
forward_params={
"speaker_embeddings": speaker_emb,
"speed": voice_speed
}
)
audio_arrays.append(speech["audio"].numpy())
combined = np.concatenate(audio_arrays)
sf.write("output.wav", combined, samplerate=16000)
progress_bar.progress(100)
# ==================== Results Display ====================
with col2:
st.subheader("πŸ“– Generated Story")
st.success(story)
st.subheader("πŸ”Š Audio Narration")
st.audio("output.wav", format="audio/wav")
# Download Options
st.download_button(
label="Download Story Text",
data=story,
file_name="generated_story.txt",
mime="text/plain"
)
st.download_button(
label="Download Audio File",
data=open("output.wav", "rb"),
file_name="story_audio.wav",
mime="audio/wav"
)
except Exception as e:
st.error(f"Generation failed: {str(e)}")
st.button("Retry", on_click=st.cache_resource.clear)