Spaces:
Runtime error
Runtime error
// backend buffer type | |
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { | |
return buft->iface.get_name(buft); | |
} | |
GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { | |
return buft->iface.alloc_buffer(buft, size); | |
} | |
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) { | |
return buft->iface.get_alignment(buft); | |
} | |
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { | |
// get_max_size is optional, defaults to SIZE_MAX | |
if (buft->iface.get_max_size) { | |
return buft->iface.get_max_size(buft); | |
} | |
return SIZE_MAX; | |
} | |
GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) { | |
// get_alloc_size is optional, defaults to ggml_nbytes | |
if (buft->iface.get_alloc_size) { | |
size_t size = buft->iface.get_alloc_size(buft, tensor); | |
assert(size >= ggml_nbytes(tensor)); | |
return size; | |
} | |
return ggml_nbytes(tensor); | |
} | |
bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { | |
return buft->iface.supports_backend(buft, backend); | |
} | |
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { | |
if (buft->iface.is_host) { | |
return buft->iface.is_host(buft); | |
} | |
return false; | |
} | |
// backend buffer | |
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( | |
ggml_backend_buffer_type_t buft, | |
struct ggml_backend_buffer_i iface, | |
ggml_backend_buffer_context_t context, | |
size_t size) { | |
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); | |
(*buffer) = (struct ggml_backend_buffer) { | |
/* .interface = */ iface, | |
/* .buft = */ buft, | |
/* .context = */ context, | |
/* .size = */ size, | |
/* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY | |
}; | |
return buffer; | |
} | |
const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) { | |
return buffer->iface.get_name(buffer); | |
} | |
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { | |
if (buffer == NULL) { | |
return; | |
} | |
if (buffer->iface.free_buffer != NULL) { | |
buffer->iface.free_buffer(buffer); | |
} | |
free(buffer); | |
} | |
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { | |
return buffer->size; | |
} | |
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { | |
void * base = buffer->iface.get_base(buffer); | |
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL"); | |
return base; | |
} | |
GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
// init_tensor is optional | |
if (buffer->iface.init_tensor) { | |
buffer->iface.init_tensor(buffer, tensor); | |
} | |
} | |
size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) { | |
return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer)); | |
} | |
size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) { | |
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer)); | |
} | |
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor); | |
} | |
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { | |
buffer->iface.clear(buffer, value); | |
} | |
bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { | |
return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer)); | |
} | |
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { | |
buffer->usage = usage; | |
// FIXME: add a generic callback to the buffer interface | |
if (ggml_backend_buffer_is_multi_buffer(buffer)) { | |
ggml_backend_multi_buffer_set_usage(buffer, usage); | |
} | |
} | |
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) { | |
return buffer->buft; | |
} | |
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) { | |
if (buffer->iface.reset) { | |
buffer->iface.reset(buffer); | |
} | |
} | |
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) { | |
ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer; | |
if (dst_buf->iface.cpy_tensor) { | |
return src->buffer->iface.cpy_tensor(dst_buf, src, dst); | |
} | |
return false; | |
} | |
// backend | |
ggml_guid_t ggml_backend_guid(ggml_backend_t backend) { | |
if (backend == NULL) { | |
return NULL; | |
} | |
return backend->guid; | |
} | |
const char * ggml_backend_name(ggml_backend_t backend) { | |
if (backend == NULL) { | |
return "NULL"; | |
} | |
return backend->iface.get_name(backend); | |
} | |
void ggml_backend_free(ggml_backend_t backend) { | |
if (backend == NULL) { | |
return; | |
} | |
backend->iface.free(backend); | |
} | |
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) { | |
return backend->iface.get_default_buffer_type(backend); | |
} | |
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { | |
return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size); | |
} | |
size_t ggml_backend_get_alignment(ggml_backend_t backend) { | |
return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend)); | |
} | |
size_t ggml_backend_get_max_size(ggml_backend_t backend) { | |
return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend)); | |
} | |
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); | |
if (backend->iface.set_tensor_async == NULL) { | |
ggml_backend_tensor_set(tensor, data, offset, size); | |
} else { | |
backend->iface.set_tensor_async(backend, tensor, data, offset, size); | |
} | |
} | |
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); | |
if (backend->iface.get_tensor_async == NULL) { | |
ggml_backend_tensor_get(tensor, data, offset, size); | |
} else { | |
backend->iface.get_tensor_async(backend, tensor, data, offset, size); | |
} | |
} | |
GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; | |
GGML_ASSERT(buf != NULL && "tensor buffer not set"); | |
GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); | |
if (!size) { | |
return; | |
} | |
buf->iface.set_tensor(buf, tensor, data, offset, size); | |
} | |
GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; | |
GGML_ASSERT(buf != NULL && "tensor buffer not set"); | |
GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | |
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); | |
if (!size) { | |
return; | |
} | |
buf->iface.get_tensor(buf, tensor, data, offset, size); | |
} | |
void ggml_backend_synchronize(ggml_backend_t backend) { | |
if (backend->iface.synchronize == NULL) { | |
return; | |
} | |
backend->iface.synchronize(backend); | |
} | |
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
GGML_ASSERT(backend->iface.graph_plan_create != NULL); | |
return backend->iface.graph_plan_create(backend, cgraph); | |
} | |
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
GGML_ASSERT(backend->iface.graph_plan_free != NULL); | |
backend->iface.graph_plan_free(backend, plan); | |
} | |
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
GGML_ASSERT(backend->iface.graph_plan_compute != NULL); | |
return backend->iface.graph_plan_compute(backend, plan); | |
} | |
enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph); | |
ggml_backend_synchronize(backend); | |
return err; | |
} | |
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
return backend->iface.graph_compute(backend, cgraph); | |
} | |
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { | |
return backend->iface.supports_op(backend, op); | |
} | |
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) { | |
if (backend->iface.offload_op != NULL) { | |
return backend->iface.offload_op(backend, op); | |
} | |
return false; | |
} | |
// backend copy | |
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | |
if (a->type != b->type) { | |
return false; | |
} | |
for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
if (a->ne[i] != b->ne[i]) { | |
return false; | |
} | |
if (a->nb[i] != b->nb[i]) { | |
return false; | |
} | |
} | |
return true; | |
} | |
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { | |
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); | |
if (src == dst) { | |
return; | |
} | |
if (ggml_backend_buffer_is_host(src->buffer)) { | |
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src)); | |
} else if (ggml_backend_buffer_is_host(dst->buffer)) { | |
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); | |
} else if (!ggml_backend_buffer_copy_tensor(src, dst)) { | |
fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer)); | |
size_t nbytes = ggml_nbytes(src); | |
void * data = malloc(nbytes); | |
ggml_backend_tensor_get(src, data, 0, nbytes); | |
ggml_backend_tensor_set(dst, data, 0, nbytes); | |
free(data); | |
} | |
} | |
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) { | |
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); | |
if (src == dst) { | |
return; | |
} | |
if (backend_dst->iface.cpy_tensor_async != NULL) { | |
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) { | |
return; | |
} | |
} | |
// an async copy would normally happen after all the queued operations on both backends are completed | |
// sync src, set_async dst | |
if (ggml_backend_buffer_is_host(src->buffer)) { | |
ggml_backend_synchronize(backend_src); | |
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src)); | |
} else { | |
ggml_backend_synchronize(backend_src); | |
ggml_backend_tensor_copy(src, dst); | |
ggml_backend_synchronize(backend_dst); | |
} | |
} | |
// events | |
ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) { | |
if (backend->iface.event_new == NULL) { | |
return NULL; | |
} | |
return backend->iface.event_new(backend); | |
} | |
void ggml_backend_event_free(ggml_backend_event_t event) { | |
if (event == NULL) { | |
return; | |
} | |
event->backend->iface.event_free(event); | |
} | |
void ggml_backend_event_record(ggml_backend_event_t event) { | |
GGML_ASSERT(event->backend->iface.event_record != NULL); | |
event->backend->iface.event_record(event); | |
} | |
void ggml_backend_event_synchronize(ggml_backend_event_t event) { | |
GGML_ASSERT(event->backend->iface.event_synchronize != NULL); | |
event->backend->iface.event_synchronize(event); | |
} | |
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { | |
GGML_ASSERT(backend->iface.event_wait != NULL); | |
backend->iface.event_wait(backend, event); | |
} | |
// backend registry | |
struct ggml_backend_reg { | |
char name[128]; | |
ggml_backend_init_fn init_fn; | |
ggml_backend_buffer_type_t default_buffer_type; | |
void * user_data; | |
}; | |
static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS]; | |
static size_t ggml_backend_registry_count = 0; | |
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data); | |
GGML_CALL static void ggml_backend_registry_init(void) { | |
static bool initialized = false; | |
if (initialized) { | |
return; | |
} | |
initialized = true; | |
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL); | |
// add forward decls here to avoid including the backend headers | |
extern GGML_CALL void ggml_backend_cuda_reg_devices(void); | |
ggml_backend_cuda_reg_devices(); | |
extern void ggml_backend_sycl_reg_devices(void); | |
ggml_backend_sycl_reg_devices(); | |
extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); | |
extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); | |
ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL); | |
extern GGML_CALL int ggml_backend_vk_reg_devices(void); | |
ggml_backend_vk_reg_devices(); | |
extern GGML_CALL void ggml_backend_kompute_reg_devices(void); | |
ggml_backend_kompute_reg_devices(); | |
} | |
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { | |
GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS); | |
size_t id = ggml_backend_registry_count; | |
ggml_backend_registry[id] = (struct ggml_backend_reg) { | |
/* .name = */ {0}, | |
/* .fn = */ init_fn, | |
/* .default_buffer_type = */ default_buffer_type, | |
/* .user_data = */ user_data, | |
}; | |
snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name); | |
fprintf(stderr, "%s: registered backend %s\n", __func__, name); | |
ggml_backend_registry_count++; | |
} | |
size_t ggml_backend_reg_get_count(void) { | |
ggml_backend_registry_init(); | |
return ggml_backend_registry_count; | |
} | |
size_t ggml_backend_reg_find_by_name(const char * name) { | |
ggml_backend_registry_init(); | |
for (size_t i = 0; i < ggml_backend_registry_count; i++) { | |
// TODO: case insensitive in a portable way | |
if (strcmp(ggml_backend_registry[i].name, name) == 0) { | |
return i; | |
} | |
} | |
// not found | |
return SIZE_MAX; | |
} | |
// init from backend:params string | |
ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) { | |
ggml_backend_registry_init(); | |
const char * params = strchr(backend_str, ':'); | |
char backend_name[128]; | |
if (params == NULL) { | |
snprintf(backend_name, sizeof(backend_name), "%s", backend_str); | |
params = ""; | |
} else { | |
snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str); | |
params++; | |
} | |
size_t backend_i = ggml_backend_reg_find_by_name(backend_name); | |
if (backend_i == SIZE_MAX) { | |
fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name); | |
return NULL; | |
} | |
return ggml_backend_reg_init_backend(backend_i, params); | |
} | |
const char * ggml_backend_reg_get_name(size_t i) { | |
ggml_backend_registry_init(); | |
GGML_ASSERT(i < ggml_backend_registry_count); | |
return ggml_backend_registry[i].name; | |
} | |
ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) { | |
ggml_backend_registry_init(); | |
GGML_ASSERT(i < ggml_backend_registry_count); | |
return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data); | |
} | |
ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) { | |
ggml_backend_registry_init(); | |
GGML_ASSERT(i < ggml_backend_registry_count); | |
return ggml_backend_registry[i].default_buffer_type; | |
} | |
ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) { | |
ggml_backend_registry_init(); | |
GGML_ASSERT(i < ggml_backend_registry_count); | |
return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size); | |
} | |
// backend CPU | |
static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment | |
GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { | |
return "CPU"; | |
GGML_UNUSED(buffer); | |
} | |
GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { | |
uintptr_t data = (uintptr_t)buffer->context; | |
// align the buffer | |
if (data % TENSOR_ALIGNMENT != 0) { | |
data = GGML_PAD(data, TENSOR_ALIGNMENT); | |
} | |
return (void *)data; | |
} | |
GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { | |
free(buffer->context); | |
} | |
GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
memcpy((char *)tensor->data + offset, data, size); | |
GGML_UNUSED(buffer); | |
} | |
GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
memcpy(data, (const char *)tensor->data + offset, size); | |
GGML_UNUSED(buffer); | |
} | |
GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { | |
if (ggml_backend_buffer_is_host(src->buffer)) { | |
memcpy(dst->data, src->data, ggml_nbytes(src)); | |
return true; | |
} | |
return false; | |
GGML_UNUSED(buffer); | |
} | |
GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { | |
memset(buffer->context, value, buffer->size); | |
} | |
static struct ggml_backend_buffer_i cpu_backend_buffer_i = { | |
/* .get_name = */ ggml_backend_cpu_buffer_name, | |
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, | |
/* .get_base = */ ggml_backend_cpu_buffer_get_base, | |
/* .init_tensor = */ NULL, // no initialization required | |
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, | |
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, | |
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, | |
/* .clear = */ ggml_backend_cpu_buffer_clear, | |
/* .reset = */ NULL, | |
}; | |
// for buffers from ptr, free is not called | |
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { | |
/* .get_name = */ ggml_backend_cpu_buffer_name, | |
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed | |
/* .get_base = */ ggml_backend_cpu_buffer_get_base, | |
/* .init_tensor = */ NULL, // no initialization required | |
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, | |
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, | |
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, | |
/* .clear = */ ggml_backend_cpu_buffer_clear, | |
/* .reset = */ NULL, | |
}; | |
GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { | |
return "CPU"; | |
GGML_UNUSED(buft); | |
} | |
GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { | |
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned | |
void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h) | |
if (data == NULL) { | |
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size); | |
return NULL; | |
} | |
return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size); | |
} | |
GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { | |
return TENSOR_ALIGNMENT; | |
GGML_UNUSED(buft); | |
} | |
GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { | |
return ggml_backend_is_cpu(backend); | |
GGML_UNUSED(buft); | |
} | |
GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { | |
return true; | |
GGML_UNUSED(buft); | |
} | |
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { | |
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { | |
/* .iface = */ { | |
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name, | |
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, | |
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, | |
/* .get_max_size = */ NULL, // defaults to SIZE_MAX | |
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes | |
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend, | |
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host, | |
}, | |
/* .context = */ NULL, | |
}; | |
return &ggml_backend_cpu_buffer_type; | |
} | |
// buffer type HBM | |
GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) { | |
return "CPU_HBM"; | |
GGML_UNUSED(buft); | |
} | |
GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) { | |
return "CPU_HBM"; | |
GGML_UNUSED(buf); | |
} | |
GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { | |
hbw_free(buffer->context); | |
} | |
GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { | |
//void * ptr = hbw_malloc(size); | |
void * ptr; | |
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size); | |
if (result != 0) { | |
fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size); | |
return NULL; | |
} | |
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); | |
buffer->buft = buft; | |
buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name; | |
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer; | |
return buffer; | |
} | |
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) { | |
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = { | |
/* .iface = */ { | |
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name, | |
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer, | |
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, | |
/* .get_max_size = */ NULL, // defaults to SIZE_MAX | |
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes | |
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend, | |
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host, | |
}, | |
/* .context = */ NULL, | |
}; | |
return &ggml_backend_cpu_buffer_type_hbm; | |
} | |
struct ggml_backend_cpu_context { | |
int n_threads; | |
void * work_data; | |
size_t work_size; | |
ggml_abort_callback abort_callback; | |
void * abort_callback_data; | |
}; | |
GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) { | |
return "CPU"; | |
GGML_UNUSED(backend); | |
} | |
GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) { | |
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; | |
free(cpu_ctx->work_data); | |
free(cpu_ctx); | |
free(backend); | |
} | |
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) { | |
return ggml_backend_cpu_buffer_type(); | |
GGML_UNUSED(backend); | |
} | |
struct ggml_backend_plan_cpu { | |
struct ggml_cplan cplan; | |
struct ggml_cgraph cgraph; | |
}; | |
GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) { | |
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; | |
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); | |
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | |
cpu_plan->cgraph = *cgraph; // FIXME: deep copy | |
if (cpu_plan->cplan.work_size > 0) { | |
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); | |
if (cpu_plan->cplan.work_data == NULL) { | |
free(cpu_plan); | |
return NULL; | |
} | |
} | |
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback; | |
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data; | |
return cpu_plan; | |
} | |
GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; | |
free(cpu_plan->cplan.work_data); | |
free(cpu_plan); | |
GGML_UNUSED(backend); | |
} | |
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { | |
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; | |
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); | |
GGML_UNUSED(backend); | |
} | |
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { | |
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; | |
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | |
if (cpu_ctx->work_size < cplan.work_size) { | |
free(cpu_ctx->work_data); | |
cpu_ctx->work_data = malloc(cplan.work_size); | |
if (cpu_ctx->work_data == NULL) { | |
cpu_ctx->work_size = 0; | |
return GGML_STATUS_ALLOC_FAILED; | |
} | |
cpu_ctx->work_size = cplan.work_size; | |
} | |
cplan.work_data = cpu_ctx->work_data; | |
cplan.abort_callback = cpu_ctx->abort_callback; | |
cplan.abort_callback_data = cpu_ctx->abort_callback_data; | |
return ggml_graph_compute(cgraph, &cplan); | |
} | |
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { | |
switch (op->op) { | |
case GGML_OP_CPY: | |
return | |
op->type != GGML_TYPE_IQ2_XXS && | |
op->type != GGML_TYPE_IQ2_XS && | |
op->type != GGML_TYPE_IQ1_S && | |
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float | |
case GGML_OP_MUL_MAT: | |
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; | |
default: | |
return true; | |
} | |
GGML_UNUSED(backend); | |
} | |
static struct ggml_backend_i cpu_backend_i = { | |
/* .get_name = */ ggml_backend_cpu_name, | |
/* .free = */ ggml_backend_cpu_free, | |
/* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type, | |
/* .set_tensor_async = */ NULL, | |
/* .get_tensor_async = */ NULL, | |
/* .cpy_tensor_async = */ NULL, | |
/* .synchronize = */ NULL, | |
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, | |
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, | |
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, | |
/* .graph_compute = */ ggml_backend_cpu_graph_compute, | |
/* .supports_op = */ ggml_backend_cpu_supports_op, | |
/* .offload_op = */ NULL, | |
/* .event_new = */ NULL, | |
/* .event_free = */ NULL, | |
/* .event_record = */ NULL, | |
/* .event_wait = */ NULL, | |
/* .event_synchronize = */ NULL, | |
}; | |
static ggml_guid_t ggml_backend_cpu_guid(void) { | |
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 }; | |
return &guid; | |
} | |
ggml_backend_t ggml_backend_cpu_init(void) { | |
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); | |
if (ctx == NULL) { | |
return NULL; | |
} | |
ctx->n_threads = GGML_DEFAULT_N_THREADS; | |
ctx->work_data = NULL; | |
ctx->work_size = 0; | |
ctx->abort_callback = NULL; | |
ctx->abort_callback_data = NULL; | |
ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); | |
if (cpu_backend == NULL) { | |
free(ctx); | |
return NULL; | |
} | |
*cpu_backend = (struct ggml_backend) { | |
/* .guid = */ ggml_backend_cpu_guid(), | |
/* .interface = */ cpu_backend_i, | |
/* .context = */ ctx | |
}; | |
return cpu_backend; | |
} | |
GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) { | |
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid()); | |
} | |
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { | |
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); | |
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; | |
ctx->n_threads = n_threads; | |
} | |
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) { | |
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); | |
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; | |
ctx->abort_callback = abort_callback; | |
ctx->abort_callback_data = abort_callback_data; | |
} | |
GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { | |
GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned"); | |
return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size); | |
} | |
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) { | |
return ggml_backend_cpu_init(); | |
GGML_UNUSED(params); | |
GGML_UNUSED(user_data); | |
} | |
// multi-buffer buffer | |
struct ggml_backend_multi_buffer_context { | |
ggml_backend_buffer_t * buffers; | |
size_t n_buffers; | |
}; | |
typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t; | |
GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) { | |
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; | |
return ctx->buffers[0]->iface.get_name(ctx->buffers[0]); | |
} | |
GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { | |
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; | |
for (size_t i = 0; i < ctx->n_buffers; i++) { | |
ggml_backend_buffer_free(ctx->buffers[i]); | |
} | |
free(ctx->buffers); | |
free(ctx); | |
} | |
GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { | |
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; | |
for (size_t i = 0; i < ctx->n_buffers; i++) { | |
ggml_backend_buffer_clear(ctx->buffers[i], value); | |
} | |
} | |
static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) { | |
static struct ggml_backend_buffer_i multi_backend_buffer_i = { | |
/* .get_name = */ ggml_backend_multi_buffer_get_name, | |
/* .free_buffer = */ ggml_backend_multi_buffer_free_buffer, | |
/* .get_base = */ NULL, | |
/* .init_tensor = */ NULL, | |
/* .set_tensor = */ NULL, | |
/* .get_tensor = */ NULL, | |
/* .cpy_tensor = */ NULL, | |
/* .clear = */ ggml_backend_multi_buffer_clear, | |
/* .reset = */ NULL, | |
}; | |
return multi_backend_buffer_i; | |
} | |
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) { | |
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context)); | |
ctx->n_buffers = n_buffers; | |
ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t)); | |
GGML_ASSERT(ctx->buffers != NULL); | |
size_t total_size = 0; | |
for (size_t i = 0; i < n_buffers; i++) { | |
ctx->buffers[i] = buffers[i]; | |
total_size += ggml_backend_buffer_get_size(buffers[i]); | |
} | |
return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size); | |
} | |
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { | |
return buffer->iface.get_name == ggml_backend_multi_buffer_get_name; | |
} | |
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { | |
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer)); | |
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; | |
for (size_t i = 0; i < ctx->n_buffers; i++) { | |
ggml_backend_buffer_set_usage(ctx->buffers[i], usage); | |
} | |
} | |
// creates a copy of the tensor with the same memory layout | |
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) { | |
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor); | |
for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
dup->nb[i] = tensor->nb[i]; | |
} | |
return dup; | |
} | |
static bool ggml_is_view_op(enum ggml_op op) { | |
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; | |
} | |
// scheduler | |
struct ggml_backend_sched_split { | |
int backend_id; | |
int i_start; | |
int i_end; | |
struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS]; | |
int n_inputs; | |
// graph view of this split | |
struct ggml_cgraph graph; | |
}; | |
struct ggml_backend_sched { | |
bool is_reset; // true if the scheduler has been reset since the last graph split | |
bool is_alloc; | |
int n_backends; | |
ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS]; | |
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS]; | |
ggml_gallocr_t galloc; | |
// hash keys of the nodes in the graph | |
struct ggml_hash_set hash_set; | |
// hash values | |
int * tensor_backend_id; | |
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES]; | |
int * node_backend_ids; // [graph_size] | |
int * leaf_backend_ids; // [graph_size] | |
// copy of the graph with modified inputs | |
struct ggml_cgraph * graph; | |
// graph splits | |
struct ggml_backend_sched_split * splits; | |
int n_splits; | |
int splits_capacity; | |
// pipeline parallelism support | |
int n_copies; | |
int cur_copy; | |
ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES]; | |
struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS]; | |
int n_graph_inputs; | |
struct ggml_context * ctx; | |
ggml_backend_sched_eval_callback callback_eval; | |
void * callback_eval_user_data; | |
// align context_buffer to GGML_MEM_ALIGN | |
__declspec(align(GGML_MEM_ALIGN)) | |
__attribute__((aligned(GGML_MEM_ALIGN))) | |
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)]; | |
}; | |
// returns the priority of the backend, lower id is higher priority | |
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) { | |
for (int i = 0; i < sched->n_backends; i++) { | |
if (sched->backends[i] == backend) { | |
return i; | |
} | |
} | |
return -1; | |
} | |
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) { | |
ggml_backend_buffer_t buffer = tensor->buffer; | |
if (buffer == NULL) { | |
return -1; | |
} | |
// find highest prio backend that supports the buffer type | |
for (int i = 0; i < sched->n_backends; i++) { | |
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) { | |
return i; | |
} | |
} | |
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n", | |
__func__, ggml_backend_buffer_name(buffer), tensor->name); | |
GGML_ASSERT(false); | |
return -1; | |
} | |
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only | |
// returns the backend that should be used for the node based on the current locations | |
static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) { | |
// TODO: use supports_op to check if the backend supports the op | |
// assign pre-allocated nodes to their backend | |
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor); | |
if (cur_backend_id != -1) { | |
SET_CAUSE(tensor, "1.dst"); | |
return cur_backend_id; | |
} | |
// view_src | |
if (tensor->view_src != NULL) { | |
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src); | |
if (cur_backend_id != -1) { | |
SET_CAUSE(tensor, "1.vsrc"); | |
return cur_backend_id; | |
} | |
} | |
// graph input | |
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) { | |
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU) | |
SET_CAUSE(tensor, "1.inp"); | |
return cur_backend_id; | |
} | |
// assign nodes that use weights to the backend of the weights | |
// operations with weights are preferably run on the same backend as the weights | |
for (int i = 0; i < GGML_MAX_SRC; i++) { | |
const struct ggml_tensor * src = tensor->src[i]; | |
if (src == NULL) { | |
continue; | |
} | |
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { | |
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src); | |
// check if a backend with higher prio wants to offload the op | |
if (src_backend_id == sched->n_backends - 1) { | |
for (int b = 0; b < src_backend_id; b++) { | |
if (ggml_backend_offload_op(sched->backends[b], tensor)) { | |
SET_CAUSE(tensor, "1.off"); | |
return b; | |
} | |
} | |
} | |
SET_CAUSE(tensor, "1.wgt%d", i); | |
return src_backend_id; | |
} | |
} | |
return -1; | |
} | |
static char * fmt_size(size_t size) { | |
static char buffer[128]; | |
if (size >= 1024*1024) { | |
sprintf(buffer, "%zuM", size/1024/1024); | |
} else { | |
sprintf(buffer, "%zuK", size/1024); | |
} | |
return buffer; | |
} | |
static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
int cur_split = 0; | |
for (int i = 0; i < graph->n_nodes; i++) { | |
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) { | |
ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id]; | |
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), | |
sched->splits[cur_split].n_inputs); | |
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) { | |
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, | |
fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j]))); | |
} | |
fprintf(stderr, "\n"); | |
cur_split++; | |
} | |
struct ggml_tensor * node = graph->nodes[i]; | |
if (ggml_is_view_op(node->op)) { | |
continue; | |
} | |
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node); | |
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name, | |
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node)); | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * src = node->src[j]; | |
if (src == NULL) { | |
continue; | |
} | |
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src); | |
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name, | |
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src)); | |
} | |
fprintf(stderr, "\n"); | |
} | |
} | |
//#define DEBUG_PASS1 | |
//#define DEBUG_PASS2 | |
//#define DEBUG_PASS3 | |
//#define DEBUG_PASS4 | |
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend | |
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
// reset splits | |
sched->n_splits = 0; | |
sched->n_graph_inputs = 0; | |
sched->is_reset = false; | |
struct ggml_init_params params = { | |
/* .mem_size = */ sizeof(sched->context_buffer), | |
/* .mem_buffer = */ sched->context_buffer, | |
/* .no_alloc = */ true | |
}; | |
ggml_free(sched->ctx); | |
sched->ctx = ggml_init(params); | |
if (sched->ctx == NULL) { | |
fprintf(stderr, "%s: failed to initialize context\n", __func__); | |
GGML_ASSERT(false); | |
} | |
// pass 1: assign backends to ops with pre-allocated inputs | |
for (int i = 0; i < graph->n_leafs; i++) { | |
struct ggml_tensor * leaf = graph->leafs[i]; | |
int * leaf_backend_id = &tensor_backend_id(leaf); | |
if (*leaf_backend_id != -1) { | |
// do not overwrite user assignments | |
continue; | |
} | |
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf); | |
} | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
int * node_backend_id = &tensor_backend_id(node); | |
if (*node_backend_id != -1) { | |
// do not overwrite user assignments | |
continue; | |
} | |
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node); | |
// src | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * src = node->src[j]; | |
if (src == NULL) { | |
continue; | |
} | |
int * src_backend_id = &tensor_backend_id(src); | |
if (*src_backend_id == -1) { | |
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src); | |
} | |
} | |
} | |
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); | |
// pass 2: expand current backend assignments | |
// assign the same backend to adjacent nodes | |
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend) | |
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops | |
// pass 2.2 expand gpu down | |
{ | |
int cur_backend_id = -1; | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
if (ggml_is_view_op(node->op)) { | |
continue; | |
} | |
int * node_backend_id = &tensor_backend_id(node); | |
if (*node_backend_id != -1) { | |
if (*node_backend_id == sched->n_backends - 1) { | |
// skip cpu (lowest prio backend) | |
cur_backend_id = -1; | |
} else { | |
cur_backend_id = *node_backend_id; | |
} | |
} else { | |
*node_backend_id = cur_backend_id; | |
SET_CAUSE(node, "2.2"); | |
} | |
} | |
} | |
// pass 2.1 expand gpu up | |
{ | |
int cur_backend_id = -1; | |
for (int i = graph->n_nodes - 1; i >= 0; i--) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
if (ggml_is_view_op(node->op)) { | |
continue; | |
} | |
int * node_backend_id = &tensor_backend_id(node); | |
if (*node_backend_id != -1) { | |
if (*node_backend_id == sched->n_backends - 1) { | |
// skip cpu (lowest prio backend) | |
cur_backend_id = -1; | |
} else { | |
cur_backend_id = *node_backend_id; | |
} | |
} else { | |
*node_backend_id = cur_backend_id; | |
SET_CAUSE(node, "2.1"); | |
} | |
} | |
} | |
// pass 2.4 expand rest down | |
{ | |
int cur_backend_id = -1; | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
if (ggml_is_view_op(node->op)) { | |
continue; | |
} | |
int * node_backend_id = &tensor_backend_id(node); | |
if (*node_backend_id != -1) { | |
cur_backend_id = *node_backend_id; | |
} else { | |
*node_backend_id = cur_backend_id; | |
SET_CAUSE(node, "2.4"); | |
} | |
} | |
} | |
// pass 2.3 expand rest up | |
{ | |
int cur_backend_id = -1; | |
for (int i = graph->n_nodes - 1; i >= 0; i--) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
if (ggml_is_view_op(node->op)) { | |
continue; | |
} | |
int * node_backend_id = &tensor_backend_id(node); | |
if (*node_backend_id != -1) { | |
cur_backend_id = *node_backend_id; | |
} else { | |
*node_backend_id = cur_backend_id; | |
SET_CAUSE(node, "2.3"); | |
} | |
} | |
} | |
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); | |
// pass 3: assign backends to remaining src from dst and view_src | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
int * cur_backend_id = &tensor_backend_id(node); | |
if (node->view_src != NULL && *cur_backend_id == -1) { | |
*cur_backend_id = tensor_backend_id(node->view_src); | |
SET_CAUSE(node, "3.vsrc"); | |
} | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * src = node->src[j]; | |
if (src == NULL) { | |
continue; | |
} | |
int * src_backend_id = &tensor_backend_id(src); | |
if (*src_backend_id == -1) { | |
if (src->view_src != NULL) { | |
// views are always on the same backend as the source | |
*src_backend_id = tensor_backend_id(src->view_src); | |
SET_CAUSE(src, "3.vsrc"); | |
} else { | |
*src_backend_id = *cur_backend_id; | |
SET_CAUSE(src, "3.cur"); | |
} | |
} | |
} | |
} | |
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); | |
// pass 4: split graph, find tensors that need to be copied | |
{ | |
int i_split = 0; | |
struct ggml_backend_sched_split * split = &sched->splits[0]; | |
// find the backend of the first split, skipping view ops | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
if (!ggml_is_view_op(node->op)) { | |
split->backend_id = tensor_backend_id(node); | |
break; | |
} | |
} | |
split->i_start = 0; | |
split->n_inputs = 0; | |
memset(split->inputs, 0, sizeof(split->inputs)); //HACK | |
int cur_backend_id = split->backend_id; | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
if (ggml_is_view_op(node->op)) { | |
continue; | |
} | |
const int node_backend_id = tensor_backend_id(node); | |
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now | |
// check if we should start a new split based on the sources of the current node | |
bool need_new_split = false; | |
if (node_backend_id == cur_backend_id && split->n_inputs > 0) { | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * src = node->src[j]; | |
if (src == NULL) { | |
continue; | |
} | |
// check if a weight is on a different backend | |
// by starting a new split, the memory of the previously offloaded weights can be reused | |
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { | |
int src_backend_id = tensor_backend_id(src); | |
if (src_backend_id != -1 && src_backend_id != cur_backend_id) { | |
need_new_split = true; | |
break; | |
} | |
} | |
// check if the split has too many inputs | |
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) { | |
const size_t id = hash_id(src); | |
int src_backend_id = sched->tensor_backend_id[id]; | |
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) { | |
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name); | |
need_new_split = true; | |
break; | |
} | |
} | |
} | |
} | |
if (node_backend_id != cur_backend_id || need_new_split) { | |
split->i_end = i; | |
i_split++; | |
if (i_split >= sched->splits_capacity) { | |
sched->splits_capacity *= 2; | |
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); | |
GGML_ASSERT(sched->splits != NULL); | |
} | |
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS); | |
split = &sched->splits[i_split]; | |
split->backend_id = node_backend_id; | |
split->i_start = i; | |
split->n_inputs = 0; | |
cur_backend_id = node_backend_id; | |
} | |
// find inputs that are not on the same backend | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * src = node->src[j]; | |
if (src == NULL) { | |
continue; | |
} | |
const int src_backend_id = tensor_backend_id(src); | |
assert(src_backend_id != -1); // all inputs should be assigned by now | |
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) { | |
size_t id = hash_id(src); | |
if (sched->tensor_copies[id][src_backend_id][0] == NULL) { | |
ggml_backend_t backend = sched->backends[src_backend_id]; | |
for (int c = 0; c < sched->n_copies; c++) { | |
struct ggml_tensor * tensor_copy; | |
if (c == sched->cur_copy) { | |
tensor_copy = src; // use the original tensor as the current copy | |
} else { | |
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); | |
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c); | |
} | |
if (sched->n_copies > 1) { | |
ggml_set_input(tensor_copy); | |
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor | |
} | |
sched->tensor_copies[id][src_backend_id][c] = tensor_copy; | |
SET_CAUSE(tensor_copy, "4.cpy"); | |
} | |
int n_graph_inputs = sched->n_graph_inputs++; | |
GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); | |
sched->graph_inputs[n_graph_inputs] = src; | |
} | |
} | |
if (src_backend_id != node_backend_id) { | |
// create a copy of the input in the split's backend | |
const size_t id = hash_id(src); | |
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) { | |
ggml_backend_t backend = sched->backends[cur_backend_id]; | |
for (int c = 0; c < sched->n_copies; c++) { | |
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); | |
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c); | |
if (sched->n_copies > 1) { | |
ggml_set_input(tensor_copy); | |
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor | |
} | |
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy; | |
SET_CAUSE(tensor_copy, "4.cpy"); | |
} | |
int n_inputs = split->n_inputs++; | |
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); | |
split->inputs[n_inputs] = src; | |
} | |
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy]; | |
} | |
} | |
} | |
split->i_end = graph->n_nodes; | |
sched->n_splits = i_split + 1; | |
} | |
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); | |
// create copies of the graph for each split | |
// TODO: avoid this copy | |
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false); | |
for (int i = 0; i < sched->n_splits; i++) { | |
struct ggml_backend_sched_split * split = &sched->splits[i]; | |
split->graph = ggml_graph_view(graph, split->i_start, split->i_end); | |
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split | |
for (int j = 0; j < split->n_inputs; j++) { | |
assert(graph_copy->size > (graph_copy->n_nodes + 1)); | |
struct ggml_tensor * input = split->inputs[j]; | |
const size_t input_id = hash_id(input); | |
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy]; | |
// add a dependency to the input source so that it is not freed before the copy is done | |
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input); | |
input_dep->src[0] = input; | |
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id]; | |
graph_copy->nodes[graph_copy->n_nodes++] = input_dep; | |
// add a dependency to the input copy so that it is allocated at the start of the split | |
sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id; | |
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy; | |
} | |
for (int j = split->i_start; j < split->i_end; j++) { | |
assert(graph_copy->size > graph_copy->n_nodes); | |
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]); | |
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j]; | |
} | |
} | |
if (sched->n_copies > 1) { | |
// add input copies as leafs so that they are allocated first | |
for (int i = 0; i < sched->n_graph_inputs; i++) { | |
struct ggml_tensor * input = sched->graph_inputs[i]; | |
size_t id = hash_id(input); | |
int backend_id = tensor_backend_id(input); | |
for (int c = 0; c < sched->n_copies; c++) { | |
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; | |
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; | |
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; | |
} | |
} | |
for (int i = 0; i < sched->n_splits; i++) { | |
struct ggml_backend_sched_split * split = &sched->splits[i]; | |
int backend_id = split->backend_id; | |
for (int j = 0; j < split->n_inputs; j++) { | |
struct ggml_tensor * input = split->inputs[j]; | |
size_t id = hash_id(input); | |
for (int c = 0; c < sched->n_copies; c++) { | |
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; | |
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; | |
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; | |
} | |
} | |
} | |
} | |
// add leafs from the original graph | |
for (int i = 0; i < graph->n_leafs; i++) { | |
struct ggml_tensor * leaf = graph->leafs[i]; | |
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf); | |
graph_copy->leafs[graph_copy->n_leafs++] = leaf; | |
} | |
sched->graph = graph_copy; | |
} | |
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { | |
// allocate graph | |
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { | |
// the re-allocation may cause the split inputs to be moved to a different address | |
ggml_backend_sched_synchronize(sched); | |
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__); | |
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids); | |
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { | |
fprintf(stderr, "%s: failed to allocate graph\n", __func__); | |
return false; | |
} | |
} | |
return true; | |
} | |
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { | |
struct ggml_backend_sched_split * splits = sched->splits; | |
for (int i = 0; i < sched->n_splits; i++) { | |
struct ggml_backend_sched_split * split = &splits[i]; | |
int split_backend_id = split->backend_id; | |
ggml_backend_t split_backend = sched->backends[split_backend_id]; | |
// copy the input tensors to the split backend | |
for (int j = 0; j < split->n_inputs; j++) { | |
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]); | |
struct ggml_tensor * input = split->inputs[j]; | |
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy]; | |
if (input->flags & GGML_TENSOR_FLAG_INPUT) { | |
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done | |
if (sched->events[split_backend_id][sched->cur_copy] != NULL) { | |
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]); | |
} else { | |
ggml_backend_synchronize(split_backend); | |
} | |
ggml_backend_tensor_copy(input, input_cpy); | |
} else { | |
// wait for the split backend to finish using the input before overwriting it | |
if (sched->events[split_backend_id][sched->cur_copy] != NULL) { | |
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]); | |
} else { | |
ggml_backend_synchronize(split_backend); | |
} | |
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy); | |
} | |
} | |
if (!sched->callback_eval) { | |
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph); | |
if (ec != GGML_STATUS_SUCCESS) { | |
return ec; | |
} | |
} else { | |
// similar to ggml_backend_compare_graph_backend | |
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) { | |
struct ggml_tensor * t = split->graph.nodes[j0]; | |
// check if the user needs data from this node | |
bool need = sched->callback_eval(t, true, sched->callback_eval_user_data); | |
int j1 = j0; | |
// determine the range [j0, j1] of nodes that can be computed together | |
while (!need && j1 < split->graph.n_nodes - 1) { | |
t = split->graph.nodes[++j1]; | |
need = sched->callback_eval(t, true, sched->callback_eval_user_data); | |
} | |
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1); | |
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv); | |
if (ec != GGML_STATUS_SUCCESS) { | |
return ec; | |
} | |
// TODO: pass backend to the callback, then the user can decide if they want to synchronize | |
ggml_backend_synchronize(split_backend); | |
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) { | |
break; | |
} | |
j0 = j1; | |
} | |
} | |
// record the event of this copy | |
if (split->n_inputs > 0) { | |
if (sched->events[split_backend_id][sched->cur_copy] != NULL) { | |
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]); | |
} | |
} | |
} | |
sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies; | |
return GGML_STATUS_SUCCESS; | |
} | |
ggml_backend_sched_t ggml_backend_sched_new( | |
ggml_backend_t * backends, | |
ggml_backend_buffer_type_t * bufts, | |
int n_backends, | |
size_t graph_size, | |
bool parallel) { | |
GGML_ASSERT(n_backends > 0); | |
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS); | |
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU | |
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched)); | |
// initialize hash table | |
sched->hash_set = ggml_hash_set_new(graph_size); | |
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0])); | |
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0])); | |
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2; | |
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0])); | |
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0])); | |
sched->n_backends = n_backends; | |
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1; | |
const int initial_splits_capacity = 16; | |
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0])); | |
sched->splits_capacity = initial_splits_capacity; | |
for (int b = 0; b < n_backends; b++) { | |
sched->backends[b] = backends[b]; | |
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]); | |
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b])); | |
if (sched->n_copies > 1) { | |
for (int c = 0; c < sched->n_copies; c++) { | |
sched->events[b][c] = ggml_backend_event_new(backends[b]); | |
} | |
} | |
} | |
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends); | |
ggml_backend_sched_reset(sched); | |
return sched; | |
} | |
void ggml_backend_sched_free(ggml_backend_sched_t sched) { | |
if (sched == NULL) { | |
return; | |
} | |
for (int b = 0; b < sched->n_backends; b++) { | |
for (int c = 0; c < sched->n_copies; c++) { | |
ggml_backend_event_free(sched->events[b][c]); | |
} | |
} | |
ggml_gallocr_free(sched->galloc); | |
ggml_free(sched->ctx); | |
free(sched->splits); | |
free(sched->hash_set.keys); | |
free(sched->tensor_backend_id); | |
free(sched->tensor_copies); | |
free(sched->node_backend_ids); | |
free(sched->leaf_backend_ids); | |
free(sched); | |
} | |
void ggml_backend_sched_reset(ggml_backend_sched_t sched) { | |
// reset state for the next run | |
if (!sched->is_reset) { | |
size_t hash_size = sched->hash_set.size; | |
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT | |
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); | |
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); | |
sched->is_reset = true; | |
} | |
sched->is_alloc = false; | |
} | |
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { | |
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes); | |
ggml_backend_sched_split_graph(sched, measure_graph); | |
// TODO: extract this to a separate function | |
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) { | |
return false; | |
} | |
ggml_backend_sched_reset(sched); | |
ggml_backend_sched_synchronize(sched); | |
return true; | |
} | |
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes); | |
ggml_backend_sched_split_graph(sched, graph); | |
if (!ggml_backend_sched_alloc_splits(sched)) { | |
return false; | |
} | |
sched->is_alloc = true; | |
return true; | |
} | |
enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph); | |
ggml_backend_sched_synchronize(sched); | |
return err; | |
} | |
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { | |
if (!sched->is_reset && !sched->is_alloc) { | |
ggml_backend_sched_reset(sched); | |
} | |
if (!sched->is_alloc) { | |
if (!ggml_backend_sched_alloc_graph(sched, graph)) { | |
return GGML_STATUS_ALLOC_FAILED; | |
} | |
} | |
return ggml_backend_sched_compute_splits(sched); | |
} | |
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { | |
for (int i = 0; i < sched->n_backends; i++) { | |
ggml_backend_synchronize(sched->backends[i]); | |
} | |
} | |
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { | |
sched->callback_eval = callback; | |
sched->callback_eval_user_data = user_data; | |
} | |
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { | |
return sched->n_splits; | |
} | |
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) { | |
return sched->n_copies; | |
} | |
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) { | |
int backend_index = ggml_backend_sched_backend_id(sched, backend); | |
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); | |
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index); | |
} | |
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { | |
int backend_index = ggml_backend_sched_backend_id(sched, backend); | |
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); | |
tensor_backend_id(node) = backend_index; | |
} | |
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { | |
int backend_index = tensor_backend_id(node); | |
if (backend_index == -1) { | |
return NULL; | |
} | |
return sched->backends[backend_index]; | |
} | |
// utils | |
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
GGML_ASSERT(tensor->buffer == NULL); | |
GGML_ASSERT(tensor->view_src != NULL); | |
GGML_ASSERT(tensor->view_src->buffer != NULL); | |
GGML_ASSERT(tensor->view_src->data != NULL); | |
tensor->buffer = buffer; | |
tensor->data = (char *)tensor->view_src->data + tensor->view_offs; | |
tensor->backend = tensor->view_src->backend; | |
ggml_backend_buffer_init_tensor(buffer, tensor); | |
} | |
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) { | |
GGML_ASSERT(tensor->buffer == NULL); | |
GGML_ASSERT(tensor->data == NULL); | |
GGML_ASSERT(tensor->view_src == NULL); | |
GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer)); | |
GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <= | |
(char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer)); | |
tensor->buffer = buffer; | |
tensor->data = addr; | |
ggml_backend_buffer_init_tensor(buffer, tensor); | |
} | |
static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, | |
struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) { | |
GGML_ASSERT(src != NULL); | |
GGML_ASSERT(src->data && "graph must be allocated"); | |
size_t id = ggml_hash_insert(hash_set, src); | |
if (id == GGML_HASHTABLE_ALREADY_EXISTS) { | |
return node_copies[ggml_hash_find(hash_set, src)]; | |
} | |
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src); | |
if (src->view_src != NULL) { | |
dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src); | |
dst->view_offs = src->view_offs; | |
} | |
dst->op = src->op; | |
memcpy(dst->op_params, src->op_params, sizeof(dst->op_params)); | |
ggml_set_name(dst, src->name); | |
// copy src | |
for (int i = 0; i < GGML_MAX_SRC; i++) { | |
struct ggml_tensor * s = src->src[i]; | |
if (s == NULL) { | |
continue; | |
} | |
dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s); | |
} | |
node_copies[id] = dst; | |
return dst; | |
} | |
static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) { | |
size_t id = ggml_hash_find(hash_set, src); | |
if (node_init[id]) { | |
return; | |
} | |
node_init[id] = true; | |
struct ggml_tensor * dst = node_copies[id]; | |
if (dst->view_src != NULL) { | |
graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src); | |
ggml_backend_view_init(dst->view_src->buffer, dst); | |
} | |
else { | |
ggml_backend_tensor_copy(src, dst); | |
} | |
// init src | |
for (int i = 0; i < GGML_MAX_SRC; i++) { | |
struct ggml_tensor * s = src->src[i]; | |
if (s == NULL) { | |
continue; | |
} | |
graph_copy_init_tensor(hash_set, node_copies, node_init, s); | |
} | |
} | |
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { | |
struct ggml_hash_set hash_set = { | |
/* .size = */ graph->visited_hash_table.size, | |
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT | |
}; | |
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT | |
bool * node_init = calloc(hash_set.size, sizeof(node_init[0])); | |
struct ggml_init_params params = { | |
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false), | |
/* .mem_buffer = */ NULL, | |
/* .no_alloc = */ true | |
}; | |
struct ggml_context * ctx_allocated = ggml_init(params); | |
struct ggml_context * ctx_unallocated = ggml_init(params); | |
if (ctx_allocated == NULL || ctx_unallocated == NULL) { | |
fprintf(stderr, "failed to allocate context for graph copy\n"); | |
free(hash_set.keys); | |
free(node_copies); | |
free(node_init); | |
ggml_free(ctx_allocated); | |
ggml_free(ctx_unallocated); | |
return (struct ggml_backend_graph_copy) { | |
/* .buffer = */ NULL, | |
/* .ctx_allocated = */ NULL, | |
/* .ctx_unallocated = */ NULL, | |
/* .graph = */ NULL, | |
}; | |
} | |
// dup nodes | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node); | |
} | |
// allocate nodes | |
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend); | |
if (buffer == NULL) { | |
fprintf(stderr, "failed to allocate buffer for graph copy\n"); | |
free(hash_set.keys); | |
free(node_copies); | |
free(node_init); | |
ggml_free(ctx_allocated); | |
ggml_free(ctx_unallocated); | |
return (struct ggml_backend_graph_copy) { | |
/* .buffer = */ NULL, | |
/* .ctx_allocated = */ NULL, | |
/* .ctx_unallocated = */ NULL, | |
/* .graph = */ NULL, | |
}; | |
} | |
//printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024); | |
// copy data and init views | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
graph_copy_init_tensor(hash_set, node_copies, node_init, node); | |
} | |
// build graph copy | |
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false); | |
for (int i = 0; i < graph->n_nodes; i++) { | |
struct ggml_tensor * node = graph->nodes[i]; | |
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)]; | |
graph_copy->nodes[i] = node_copy; | |
} | |
graph_copy->n_nodes = graph->n_nodes; | |
free(hash_set.keys); | |
free(node_copies); | |
free(node_init); | |
return (struct ggml_backend_graph_copy) { | |
/* .buffer = */ buffer, | |
/* .ctx_allocated = */ ctx_allocated, | |
/* .ctx_unallocated = */ ctx_unallocated, | |
/* .graph = */ graph_copy, | |
}; | |
} | |
void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) { | |
ggml_backend_buffer_free(copy.buffer); | |
ggml_free(copy.ctx_allocated); | |
ggml_free(copy.ctx_unallocated); | |
} | |
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) { | |
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph); | |
if (copy.buffer == NULL) { | |
return false; | |
} | |
struct ggml_cgraph * g1 = graph; | |
struct ggml_cgraph * g2 = copy.graph; | |
assert(g1->n_nodes == g2->n_nodes); | |
for (int i = 0; i < g1->n_nodes; i++) { | |
//printf("eval %d/%d\n", i, g1->n_nodes); | |
struct ggml_tensor * t1 = g1->nodes[i]; | |
struct ggml_tensor * t2 = g2->nodes[i]; | |
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2)); | |
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1); | |
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1); | |
ggml_backend_graph_compute(backend1, &g1v); | |
ggml_backend_graph_compute(backend2, &g2v); | |
if (ggml_is_view_op(t1->op)) { | |
continue; | |
} | |
// compare results, calculate rms etc | |
if (!callback(i, t1, t2, user_data)) { | |
break; | |
} | |
} | |
ggml_backend_graph_copy_free(copy); | |
return true; | |
} | |