Spaces:
Runtime error
Runtime error
int main(int argc, char ** argv) { | |
gpt_params params; | |
if (argc == 1 || argv[1][0] == '-') { | |
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]); | |
return 1 ; | |
} | |
if (argc >= 2) { | |
params.model = argv[1]; | |
} | |
if (argc >= 3) { | |
params.prompt = argv[2]; | |
} | |
if (params.prompt.empty()) { | |
params.prompt = "Hello my name is"; | |
} | |
// total length of the sequence including the prompt | |
const int n_len = 32; | |
// init LLM | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// initialize the model | |
llama_model_params model_params = llama_model_default_params(); | |
// model_params.n_gpu_layers = 99; // offload all layers to the GPU | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | |
if (model == NULL) { | |
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
// initialize the context | |
llama_context_params ctx_params = llama_context_default_params(); | |
ctx_params.seed = 1234; | |
ctx_params.n_ctx = 2048; | |
ctx_params.n_threads = params.n_threads; | |
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
if (ctx == NULL) { | |
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
// tokenize the prompt | |
std::vector<llama_token> tokens_list; | |
tokens_list = ::llama_tokenize(ctx, params.prompt, true); | |
const int n_ctx = llama_n_ctx(ctx); | |
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size()); | |
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req); | |
// make sure the KV cache is big enough to hold all the prompt and generated tokens | |
if (n_kv_req > n_ctx) { | |
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); | |
LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__); | |
return 1; | |
} | |
// print the prompt token-by-token | |
fprintf(stderr, "\n"); | |
for (auto id : tokens_list) { | |
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); | |
} | |
fflush(stderr); | |
// create a llama_batch with size 512 | |
// we use this object to submit token data for decoding | |
llama_batch batch = llama_batch_init(512, 0, 1); | |
// evaluate the initial prompt | |
for (size_t i = 0; i < tokens_list.size(); i++) { | |
llama_batch_add(batch, tokens_list[i], i, { 0 }, false); | |
} | |
// llama_decode will output logits only for the last token of the prompt | |
batch.logits[batch.n_tokens - 1] = true; | |
if (llama_decode(ctx, batch) != 0) { | |
LOG_TEE("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
// main loop | |
int n_cur = batch.n_tokens; | |
int n_decode = 0; | |
const auto t_main_start = ggml_time_us(); | |
while (n_cur <= n_len) { | |
// sample the next token | |
{ | |
auto n_vocab = llama_n_vocab(model); | |
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
// sample the most likely token | |
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); | |
// is it an end of generation? | |
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) { | |
LOG_TEE("\n"); | |
break; | |
} | |
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); | |
fflush(stdout); | |
// prepare the next batch | |
llama_batch_clear(batch); | |
// push this new token for next evaluation | |
llama_batch_add(batch, new_token_id, n_cur, { 0 }, true); | |
n_decode += 1; | |
} | |
n_cur += 1; | |
// evaluate the current batch with the transformer model | |
if (llama_decode(ctx, batch)) { | |
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); | |
return 1; | |
} | |
} | |
LOG_TEE("\n"); | |
const auto t_main_end = ggml_time_us(); | |
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | |
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); | |
llama_print_timings(ctx); | |
fprintf(stderr, "\n"); | |
llama_batch_free(batch); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |