Spaces:
Runtime error
Runtime error
int main(int argc, char ** argv) { | |
gpt_params params; | |
if (argc == 1 || argv[1][0] == '-') { | |
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]); | |
return 1 ; | |
} | |
// number of parallel batches | |
int n_parallel = 1; | |
// total length of the sequences including the prompt | |
int n_len = 32; | |
// number of layers to offload to the GPU | |
int n_gpu_layers = 0; | |
if (argc >= 2) { | |
params.model = argv[1]; | |
} | |
if (argc >= 3) { | |
params.prompt = argv[2]; | |
} | |
if (argc >= 4) { | |
n_parallel = std::atoi(argv[3]); | |
} | |
if (argc >= 5) { | |
n_len = std::atoi(argv[4]); | |
} | |
if (argc >= 6) { | |
n_gpu_layers = std::atoi(argv[5]); | |
} | |
if (params.prompt.empty()) { | |
params.prompt = "Hello my name is"; | |
} | |
process_escapes(params.prompt); | |
// init LLM | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// initialize the model | |
llama_model_params model_params = llama_model_default_params(); | |
model_params.n_gpu_layers = n_gpu_layers; | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | |
if (model == NULL) { | |
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
// tokenize the prompt | |
std::vector<llama_token> tokens_list; | |
tokens_list = ::llama_tokenize(model, params.prompt, true); | |
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; | |
// initialize the context | |
llama_context_params ctx_params = llama_context_default_params(); | |
ctx_params.seed = 1234; | |
ctx_params.n_ctx = n_kv_req; | |
ctx_params.n_batch = std::max(n_len, n_parallel); | |
ctx_params.n_seq_max = n_parallel; | |
ctx_params.n_threads = params.n_threads; | |
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
if (ctx == NULL) { | |
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
const int n_ctx = llama_n_ctx(ctx); | |
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); | |
// make sure the KV cache is big enough to hold all the prompt and generated tokens | |
if (n_kv_req > n_ctx) { | |
LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req); | |
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__); | |
return 1; | |
} | |
// print the prompt token-by-token | |
fprintf(stderr, "\n"); | |
for (auto id : tokens_list) { | |
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); | |
} | |
fflush(stderr); | |
// create a llama_batch | |
// we use this object to submit token data for decoding | |
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1); | |
// evaluate the initial prompt | |
for (size_t i = 0; i < tokens_list.size(); ++i) { | |
llama_batch_add(batch, tokens_list[i], i, { 0 }, false); | |
} | |
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size()); | |
// llama_decode will output logits only for the last token of the prompt | |
batch.logits[batch.n_tokens - 1] = true; | |
if (llama_decode(ctx, batch) != 0) { | |
LOG_TEE("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
// assign the system KV cache to all parallel sequences | |
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them | |
for (int32_t i = 1; i < n_parallel; ++i) { | |
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); | |
} | |
if (n_parallel > 1) { | |
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel); | |
} | |
// main loop | |
// we will store the parallel decoded sequences in this vector | |
std::vector<std::string> streams(n_parallel); | |
// remember the batch index of the last token for each parallel sequence | |
// we need this to determine which logits to sample from | |
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1); | |
int n_cur = batch.n_tokens; | |
int n_decode = 0; | |
const auto t_main_start = ggml_time_us(); | |
while (n_cur <= n_len) { | |
// prepare the next batch | |
llama_batch_clear(batch); | |
// sample the next token for each parallel sequence / stream | |
for (int32_t i = 0; i < n_parallel; ++i) { | |
if (i_batch[i] < 0) { | |
// the stream has already finished | |
continue; | |
} | |
auto n_vocab = llama_n_vocab(model); | |
auto * logits = llama_get_logits_ith(ctx, i_batch[i]); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
const int top_k = 40; | |
const float top_p = 0.9f; | |
const float temp = 0.4f; | |
llama_sample_top_k(ctx, &candidates_p, top_k, 1); | |
llama_sample_top_p(ctx, &candidates_p, top_p, 1); | |
llama_sample_temp (ctx, &candidates_p, temp); | |
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p); | |
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); | |
// is it an end of generation? -> mark the stream as finished | |
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) { | |
i_batch[i] = -1; | |
LOG_TEE("\n"); | |
if (n_parallel > 1) { | |
LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur); | |
} | |
continue; | |
} | |
// if there is only one stream, we print immediately to stdout | |
if (n_parallel == 1) { | |
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); | |
fflush(stdout); | |
} | |
streams[i] += llama_token_to_piece(ctx, new_token_id); | |
i_batch[i] = batch.n_tokens; | |
// push this new token for next evaluation | |
llama_batch_add(batch, new_token_id, n_cur, { i }, true); | |
n_decode += 1; | |
} | |
// all streams are finished | |
if (batch.n_tokens == 0) { | |
break; | |
} | |
n_cur += 1; | |
// evaluate the current batch with the transformer model | |
if (llama_decode(ctx, batch)) { | |
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); | |
return 1; | |
} | |
} | |
LOG_TEE("\n"); | |
if (n_parallel > 1) { | |
LOG_TEE("\n"); | |
for (int32_t i = 0; i < n_parallel; ++i) { | |
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str()); | |
} | |
} | |
const auto t_main_end = ggml_time_us(); | |
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | |
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); | |
llama_print_timings(ctx); | |
fprintf(stderr, "\n"); | |
llama_batch_free(batch); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |