Spaces:
Runtime error
Runtime error
from langchain import PromptTemplate | |
from langchain_community.llms import LlamaCpp | |
from langchain.chains import RetrievalQA | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.prompts import SystemMessagePromptTemplate | |
from langchain_community.embeddings import SentenceTransformerEmbeddings | |
from fastapi import FastAPI, Request, Form, Response | |
from fastapi.responses import HTMLResponse | |
from fastapi.templating import Jinja2Templates | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.encoders import jsonable_encoder | |
from qdrant_client import QdrantClient | |
from langchain_community.vectorstores import Qdrant | |
import os | |
import json | |
import gradio as gr | |
import sys | |
#sys.path.insert(0, <envs\myenv\lib\site-packages>). | |
local_llm = "BioMistral-7B.Q4_K_M.gguf" | |
llm = LlamaCpp(model_path= | |
local_llm,temperature=0.3,max_tokens=2048,top_p=1,n_ctx= 2048) | |
prompt_template = """Use the following pieces of information to answer the user's question. | |
If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
Chat History: {chat_history} | |
Question: {question} | |
Only return the helpful answer. Answer must be detailed and well explained. | |
Helpful answer: | |
""" | |
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings") | |
# url = "http://127.0.0.1:6333" | |
qdrant_api_key = 'ic_WPSW7zUEOYzJIbHAYKVUxTf7xVXxFfJgTN6UsnvcuXGwkRPGx3g' | |
qdrant_url = 'https://ea51a65a-6fad-48ce-b571-846d3b496882.us-east4-0.gcp.cloud.qdrant.io' | |
client = QdrantClient(url=qdrant_url, | |
port=6333, | |
api_key=qdrant_api_key, prefer_grpc=False) | |
db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db") | |
retriever = db.as_retriever(search_kwargs={"k":1}) | |
chat_history = [] | |
# Create the custom chain | |
if llm is not None and db is not None: | |
chain = ConversationalRetrievalChain.from_llm(llm=llm,retriever=retriever) | |
else: | |
print("LLM or Vector Database not initialized") | |
def predict(message, history): | |
history_langchain_format = [] | |
prompt = PromptTemplate(template=prompt_template, | |
input_variables=["chat_history", 'message']) | |
response = chain({"question": message, "chat_history": chat_history}) | |
answer = response['answer'] | |
chat_history.append((message, answer)) | |
temp = [] | |
for input_question, bot_answer in history: | |
temp.append(input_question) | |
temp.append(bot_answer) | |
history_langchain_format.append(temp) | |
temp.clear() | |
temp.append(message) | |
temp.append(answer) | |
history_langchain_format.append(temp) | |
return answer | |
gr.ChatInterface(predict).launch(debug=True) | |