Spaces:
Runtime error
Runtime error
from fastapi import APIRouter, Depends, Request | |
from pydantic import BaseModel | |
from starlette.responses import StreamingResponse | |
from private_gpt.open_ai.extensions.context_filter import ContextFilter | |
from private_gpt.open_ai.openai_models import ( | |
OpenAICompletion, | |
OpenAIMessage, | |
) | |
from private_gpt.server.chat.chat_router import ChatBody, chat_completion | |
from private_gpt.server.utils.auth import authenticated | |
completions_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)]) | |
class CompletionsBody(BaseModel): | |
prompt: str | |
system_prompt: str | None = None | |
use_context: bool = False | |
context_filter: ContextFilter | None = None | |
include_sources: bool = True | |
stream: bool = False | |
model_config = { | |
"json_schema_extra": { | |
"examples": [ | |
{ | |
"prompt": "How do you fry an egg?", | |
"system_prompt": "You are a rapper. Always answer with a rap.", | |
"stream": False, | |
"use_context": False, | |
"include_sources": False, | |
} | |
] | |
} | |
} | |
def prompt_completion( | |
request: Request, body: CompletionsBody | |
) -> OpenAICompletion | StreamingResponse: | |
"""We recommend most users use our Chat completions API. | |
Given a prompt, the model will return one predicted completion. | |
Optionally include a `system_prompt` to influence the way the LLM answers. | |
If `use_context` | |
is set to `true`, the model will use context coming from the ingested documents | |
to create the response. The documents being used can be filtered using the | |
`context_filter` and passing the document IDs to be used. Ingested documents IDs | |
can be found using `/ingest/list` endpoint. If you want all ingested documents to | |
be used, remove `context_filter` altogether. | |
When using `'include_sources': true`, the API will return the source Chunks used | |
to create the response, which come from the context provided. | |
When using `'stream': true`, the API will return data chunks following [OpenAI's | |
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming): | |
``` | |
{"id":"12345","object":"completion.chunk","created":1694268190, | |
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"}, | |
"finish_reason":null}]} | |
``` | |
""" | |
messages = [OpenAIMessage(content=body.prompt, role="user")] | |
# If system prompt is passed, create a fake message with the system prompt. | |
if body.system_prompt: | |
messages.insert(0, OpenAIMessage(content=body.system_prompt, role="system")) | |
chat_body = ChatBody( | |
messages=messages, | |
use_context=body.use_context, | |
stream=body.stream, | |
include_sources=body.include_sources, | |
context_filter=body.context_filter, | |
) | |
return chat_completion(request, chat_body) | |