Spaces:
Runtime error
Runtime error
import argparse | |
from llama_cpp import Llama | |
from langchain.llms.base import LLM | |
from typing import Optional, List, Mapping, Any | |
class LlamaLLM(LLM): | |
model_path: str | |
llm: Llama | |
def _llm_type(self) -> str: | |
return "llama-cpp-python" | |
def __init__(self, model_path: str, **kwargs: Any): | |
model_path = model_path | |
llm = Llama(model_path=model_path) | |
super().__init__(model_path=model_path, llm=llm, **kwargs) | |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
response = self.llm(prompt, stop=stop or []) | |
return response["choices"][0]["text"] | |
def _identifying_params(self) -> Mapping[str, Any]: | |
return {"model_path": self.model_path} | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-m", "--model", type=str, default="../models/7B/ggml-models.bin") | |
args = parser.parse_args() | |
# Load the model | |
llm = LlamaLLM(model_path=args.model) | |
# Basic Q&A | |
answer = llm( | |
"Question: What is the capital of France? Answer: ", stop=["Question:", "\n"] | |
) | |
print(f"Answer: {answer.strip()}") | |
# Using in a chain | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
prompt = PromptTemplate( | |
input_variables=["product"], | |
template="\n\n### Instruction:\nWrite a good name for a company that makes {product}\n\n### Response:\n", | |
) | |
chain = LLMChain(llm=llm, prompt=prompt) | |
# Run the chain only specifying the input variable. | |
print(chain.run("colorful socks")) | |