aelitta's picture
Upload folder using huggingface_hub
4bdb245 verified
raw
history blame
4.17 kB
from fastapi import APIRouter, Depends, Request
from llama_index.core.llms import ChatMessage, MessageRole
from pydantic import BaseModel
from starlette.responses import StreamingResponse
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.open_ai.openai_models import (
OpenAICompletion,
OpenAIMessage,
to_openai_response,
to_openai_sse_stream,
)
from private_gpt.server.chat.chat_service import ChatService
from private_gpt.server.utils.auth import authenticated
chat_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class ChatBody(BaseModel):
messages: list[OpenAIMessage]
use_context: bool = False
context_filter: ContextFilter | None = None
include_sources: bool = True
stream: bool = False
model_config = {
"json_schema_extra": {
"examples": [
{
"messages": [
{
"role": "system",
"content": "You are a rapper. Always answer with a rap.",
},
{
"role": "user",
"content": "How do you fry an egg?",
},
],
"stream": False,
"use_context": True,
"include_sources": True,
"context_filter": {
"docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"]
},
}
]
}
}
@chat_router.post(
"/chat/completions",
response_model=None,
responses={200: {"model": OpenAICompletion}},
tags=["Contextual Completions"],
openapi_extra={
"x-fern-streaming": {
"stream-condition": "stream",
"response": {"$ref": "#/components/schemas/OpenAICompletion"},
"response-stream": {"$ref": "#/components/schemas/OpenAICompletion"},
}
},
)
def chat_completion(
request: Request, body: ChatBody
) -> OpenAICompletion | StreamingResponse:
"""Given a list of messages comprising a conversation, return a response.
Optionally include an initial `role: system` message to influence the way
the LLM answers.
If `use_context` is set to `true`, the model will use context coming
from the ingested documents to create the response. The documents being used can
be filtered using the `context_filter` and passing the document IDs to be used.
Ingested documents IDs can be found using `/ingest/list` endpoint. If you want
all ingested documents to be used, remove `context_filter` altogether.
When using `'include_sources': true`, the API will return the source Chunks used
to create the response, which come from the context provided.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
{"id":"12345","object":"completion.chunk","created":1694268190,
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
"finish_reason":null}]}
```
"""
service = request.state.injector.get(ChatService)
all_messages = [
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
]
if body.stream:
completion_gen = service.stream_chat(
messages=all_messages,
use_context=body.use_context,
context_filter=body.context_filter,
)
return StreamingResponse(
to_openai_sse_stream(
completion_gen.response,
completion_gen.sources if body.include_sources else None,
),
media_type="text/event-stream",
)
else:
completion = service.chat(
messages=all_messages,
use_context=body.use_context,
context_filter=body.context_filter,
)
return to_openai_response(
completion.response, completion.sources if body.include_sources else None
)