Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
-
from transformers import
|
4 |
import gradio as gr
|
5 |
|
6 |
-
# Load
|
7 |
-
model_name = 'google/vit-base-patch16-224' # Example of a smaller model, adjust as needed
|
8 |
-
|
9 |
try:
|
10 |
-
|
|
|
11 |
model = model.to(device='cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
model.eval()
|
14 |
except Exception as e:
|
15 |
-
print(f"Error loading model or
|
16 |
exit()
|
17 |
|
18 |
def process_image(image, question):
|
@@ -21,29 +19,23 @@ def process_image(image, question):
|
|
21 |
# Convert Gradio image to PIL Image
|
22 |
image = Image.fromarray(image).convert('RGB')
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
|
27 |
# Perform inference
|
28 |
try:
|
29 |
with torch.no_grad():
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
tokenizer=tokenizer,
|
34 |
-
sampling=True, # if sampling=False, beam_search will be used by default
|
35 |
-
temperature=0.7,
|
36 |
-
stream=False # Set to False for non-streaming output
|
37 |
-
)
|
38 |
-
return res
|
39 |
except Exception as e:
|
40 |
return f"Error during model inference: {e}"
|
41 |
|
42 |
# Define the Gradio interface
|
43 |
interface = gr.Interface(
|
44 |
fn=process_image,
|
45 |
-
inputs=[gr.
|
46 |
-
outputs=
|
47 |
title="Image Question Answering",
|
48 |
description="Upload an image and ask a question about it. The model will provide an answer."
|
49 |
)
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Load the BLIP model and processor
|
|
|
|
|
7 |
try:
|
8 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
9 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
model = model.to(device='cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
11 |
model.eval()
|
12 |
except Exception as e:
|
13 |
+
print(f"Error loading model or processor: {e}")
|
14 |
exit()
|
15 |
|
16 |
def process_image(image, question):
|
|
|
19 |
# Convert Gradio image to PIL Image
|
20 |
image = Image.fromarray(image).convert('RGB')
|
21 |
|
22 |
+
# Preprocess the image and question
|
23 |
+
inputs = processor(image, question, return_tensors="pt").to(device)
|
24 |
|
25 |
# Perform inference
|
26 |
try:
|
27 |
with torch.no_grad():
|
28 |
+
outputs = model.generate(**inputs)
|
29 |
+
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
30 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
except Exception as e:
|
32 |
return f"Error during model inference: {e}"
|
33 |
|
34 |
# Define the Gradio interface
|
35 |
interface = gr.Interface(
|
36 |
fn=process_image,
|
37 |
+
inputs=[gr.Image(type='numpy'), gr.Textbox(label="Question")],
|
38 |
+
outputs=gr.Textbox(),
|
39 |
title="Image Question Answering",
|
40 |
description="Upload an image and ask a question about it. The model will provide an answer."
|
41 |
)
|