Spaces:
Sleeping
Sleeping
FelixzeroSun
commited on
Commit
·
035de9f
1
Parent(s):
23ed1a5
update
Browse files
app_0.py
DELETED
|
@@ -1,115 +0,0 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
import os
|
| 3 |
-
from huggingface_hub import snapshot_download
|
| 4 |
-
|
| 5 |
-
HF_REPO = "Synthard2025KoalAI/synthrad2025_task1" # 你的模型仓库
|
| 6 |
-
LOCAL_WEIGHTS_DIR = os.path.abspath("weights/task1") # 下载到 Space 工作目录
|
| 7 |
-
repo_dir = snapshot_download(
|
| 8 |
-
HF_REPO,
|
| 9 |
-
repo_type="model",
|
| 10 |
-
local_dir=LOCAL_WEIGHTS_DIR,
|
| 11 |
-
local_dir_use_symlinks=False,
|
| 12 |
-
token=os.getenv("HF_TOKEN"), # 私有模型需要
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
os.environ["nnUNet_results"] = repo_dir
|
| 17 |
-
os.environ["nnUNet_raw"] = "./nnunet_raw"
|
| 18 |
-
os.environ["nnUNet_preprocessed"] = "./nnunet_preprocessed"
|
| 19 |
-
# os.environ["nnUNet_results"] = "./nnunet_results"
|
| 20 |
-
os.environ["OPENBLAS_NUM_THREADS"] = "1"
|
| 21 |
-
|
| 22 |
-
import streamlit as st
|
| 23 |
-
import numpy as np
|
| 24 |
-
import SimpleITK as sitk
|
| 25 |
-
import io
|
| 26 |
-
|
| 27 |
-
from process import SynthradAlgorithm
|
| 28 |
-
|
| 29 |
-
st.set_page_config(page_title="SynthRad (nnUNetv2) Demo", layout="wide")
|
| 30 |
-
st.title("SynthRad (MRI+Mask → synthetic CT) — Streamlit Demo")
|
| 31 |
-
|
| 32 |
-
# ---- 全局算法(避免重复加载模型)----
|
| 33 |
-
if "algo" not in st.session_state:
|
| 34 |
-
st.session_state.algo = SynthradAlgorithm()
|
| 35 |
-
if "synth_ct" not in st.session_state:
|
| 36 |
-
st.session_state.synth_ct = None # SimpleITK.Image
|
| 37 |
-
if "orig_meta" not in st.session_state:
|
| 38 |
-
st.session_state.orig_meta = None # (spacing, origin, direction)
|
| 39 |
-
if "vol_np" not in st.session_state:
|
| 40 |
-
st.session_state.vol_np = None # numpy (D,H,W)
|
| 41 |
-
|
| 42 |
-
# ---- 左上:输入区(保留“框架”风格)----
|
| 43 |
-
c1, c2, c3 = st.columns([2, 2, 1])
|
| 44 |
-
with c1:
|
| 45 |
-
mri_file = st.file_uploader("MRI volume (.nii/.nii.gz/.mha)", type=["nii", "nii.gz", "mha"], key="mri")
|
| 46 |
-
with c2:
|
| 47 |
-
mask_file = st.file_uploader("Mask volume (.nii/.nii.gz/.mha)", type=["nii", "nii.gz", "mha"], key="mask")
|
| 48 |
-
with c3:
|
| 49 |
-
region = st.radio("Region", ["Head and Neck", "Abdomen", "Thorax"], index=1)
|
| 50 |
-
|
| 51 |
-
run_btn = st.button("Run", type="primary", disabled=not (mri_file and mask_file))
|
| 52 |
-
|
| 53 |
-
def _read_sitk_from_uploaded(f):
|
| 54 |
-
# 把上传文件读到 SimpleITK
|
| 55 |
-
suffix = ".nii.gz" if f.name.endswith(".nii.gz") else os.path.splitext(f.name)[1]
|
| 56 |
-
bio = io.BytesIO(f.read())
|
| 57 |
-
# SimpleITK 不能直接读 Bytes,需要写临时文件
|
| 58 |
-
import tempfile
|
| 59 |
-
with tempfile.NamedTemporaryFile(suffix=suffix, delete=False) as tmp:
|
| 60 |
-
tmp.write(bio.getvalue())
|
| 61 |
-
tmp.flush()
|
| 62 |
-
path = tmp.name
|
| 63 |
-
img = sitk.ReadImage(path)
|
| 64 |
-
try:
|
| 65 |
-
os.remove(path)
|
| 66 |
-
except Exception:
|
| 67 |
-
pass
|
| 68 |
-
return img
|
| 69 |
-
|
| 70 |
-
def _norm2u8(slice2d):
|
| 71 |
-
s = slice2d.astype(np.float32)
|
| 72 |
-
s = (s - np.percentile(s, 1)) / (np.percentile(s, 99) - np.percentile(s, 1) + 1e-6)
|
| 73 |
-
s = np.clip(s, 0, 1)
|
| 74 |
-
return (s * 255).astype(np.uint8)
|
| 75 |
-
|
| 76 |
-
if run_btn:
|
| 77 |
-
if not (mri_file and mask_file):
|
| 78 |
-
st.warning("请同时上传 MRI 和 Mask")
|
| 79 |
-
else:
|
| 80 |
-
with st.spinner("Running nnUNetv2 SynthradAlgorithm..."):
|
| 81 |
-
mr_img = _read_sitk_from_uploaded(mri_file)
|
| 82 |
-
mask_img = _read_sitk_from_uploaded(mask_file)
|
| 83 |
-
|
| 84 |
-
st.session_state.orig_meta = (mr_img.GetSpacing(), mr_img.GetOrigin(), mr_img.GetDirection())
|
| 85 |
-
out_img = st.session_state.algo.predict({"image": mr_img, "mask": mask_img, "region": region})
|
| 86 |
-
st.session_state.synth_ct = out_img
|
| 87 |
-
st.session_state.vol_np = sitk.GetArrayFromImage(out_img).astype(np.float32) # (D,H,W)
|
| 88 |
-
|
| 89 |
-
if st.session_state.vol_np is None:
|
| 90 |
-
st.info("请上传 MRI + Mask 并点击 Run")
|
| 91 |
-
else:
|
| 92 |
-
vol = st.session_state.vol_np
|
| 93 |
-
D, H, W = vol.shape
|
| 94 |
-
|
| 95 |
-
colL, colR = st.columns(2)
|
| 96 |
-
with colL:
|
| 97 |
-
z_idx = st.slider("Axial (Z)", 0, D - 1, D // 2, key="z_idx")
|
| 98 |
-
axial = _norm2u8(vol[z_idx, :, :])
|
| 99 |
-
st.image(axial, caption=f"Axial slice z={z_idx}", use_column_width=True)
|
| 100 |
-
|
| 101 |
-
with colR:
|
| 102 |
-
y_idx = st.slider("Coronal (Y)", 0, H - 1, H // 2, key="y_idx")
|
| 103 |
-
coronal = _norm2u8(vol[:, y_idx, :])
|
| 104 |
-
st.image(coronal, caption=f"Coronal slice y={y_idx}", use_column_width=True)
|
| 105 |
-
|
| 106 |
-
spacing, origin, direction = st.session_state.orig_meta
|
| 107 |
-
out_path = "synth_ct.nii.gz"
|
| 108 |
-
sitk.WriteImage(st.session_state.synth_ct, out_path)
|
| 109 |
-
with open(out_path, "rb") as f:
|
| 110 |
-
st.download_button(
|
| 111 |
-
label="Download synthetic CT (.nii.gz)",
|
| 112 |
-
data=f.read(),
|
| 113 |
-
file_name="synth_ct.nii.gz",
|
| 114 |
-
mime="application/octet-stream",
|
| 115 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_1.py
DELETED
|
@@ -1,204 +0,0 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
import os
|
| 3 |
-
from huggingface_hub import snapshot_download
|
| 4 |
-
|
| 5 |
-
from PIL import Image, ImageDraw
|
| 6 |
-
HF_REPO = "aehrc/Synthrad2025"
|
| 7 |
-
LOCAL_WEIGHTS_DIR = os.path.abspath("weights/task1")
|
| 8 |
-
|
| 9 |
-
token = os.getenv("HF_TOKEN")
|
| 10 |
-
if token is None:
|
| 11 |
-
|
| 12 |
-
print("[Warn] HF_TOKEN not set. If the model repo is private, set it in Settings → Variables and secrets.")
|
| 13 |
-
|
| 14 |
-
repo_dir = snapshot_download(
|
| 15 |
-
repo_id=HF_REPO,
|
| 16 |
-
repo_type="model",
|
| 17 |
-
local_dir=LOCAL_WEIGHTS_DIR,
|
| 18 |
-
local_dir_use_symlinks=False,
|
| 19 |
-
token=token,
|
| 20 |
-
)
|
| 21 |
-
print(repo_dir)
|
| 22 |
-
os.environ["nnUNet_results"] = repo_dir
|
| 23 |
-
os.environ.setdefault("nnUNet_raw", "./nnunet_raw")
|
| 24 |
-
os.environ.setdefault("nnUNet_preprocessed", "./nnunet_preprocessed")
|
| 25 |
-
os.environ["OPENBLAS_NUM_THREADS"] = "1"
|
| 26 |
-
|
| 27 |
-
import streamlit as st
|
| 28 |
-
import numpy as np
|
| 29 |
-
import SimpleITK as sitk
|
| 30 |
-
import io
|
| 31 |
-
|
| 32 |
-
from process import SynthradAlgorithm2
|
| 33 |
-
|
| 34 |
-
st.set_page_config(page_title="SynthRad (nnUNetv2) Demo", layout="wide")
|
| 35 |
-
st.title("SynthRad (MRI/CBCT + Mask → synthetic CT) — Streamlit Demo")
|
| 36 |
-
|
| 37 |
-
if "algo" not in st.session_state:
|
| 38 |
-
st.session_state.algo = SynthradAlgorithm2()
|
| 39 |
-
if "synth_ct" not in st.session_state:
|
| 40 |
-
st.session_state.synth_ct = None
|
| 41 |
-
if "orig_meta" not in st.session_state:
|
| 42 |
-
st.session_state.orig_meta = None
|
| 43 |
-
if "vol_np" not in st.session_state:
|
| 44 |
-
st.session_state.vol_np = None
|
| 45 |
-
if "input_mr" not in st.session_state:
|
| 46 |
-
st.session_state.input_mr = None
|
| 47 |
-
if "input_mask" not in st.session_state:
|
| 48 |
-
st.session_state.input_mask = None
|
| 49 |
-
|
| 50 |
-
st.subheader("Input")
|
| 51 |
-
src = st.radio("Source", ["Sample", "Upload"], index=0, horizontal=True)
|
| 52 |
-
|
| 53 |
-
from huggingface_hub import snapshot_download
|
| 54 |
-
import os
|
| 55 |
-
import tempfile, zipfile
|
| 56 |
-
|
| 57 |
-
def _download_sitk_image(img: sitk.Image, file_name: str, label: str):
|
| 58 |
-
with tempfile.NamedTemporaryFile(suffix=".nii.gz", delete=False) as tmp:
|
| 59 |
-
sitk.WriteImage(img, tmp.name)
|
| 60 |
-
tmp_path = tmp.name
|
| 61 |
-
with open(tmp_path, "rb") as f:
|
| 62 |
-
st.download_button(
|
| 63 |
-
label=label,
|
| 64 |
-
data=f.read(),
|
| 65 |
-
file_name=file_name,
|
| 66 |
-
mime="application/octet-stream",
|
| 67 |
-
)
|
| 68 |
-
try:
|
| 69 |
-
os.remove(tmp_path)
|
| 70 |
-
except Exception:
|
| 71 |
-
pass
|
| 72 |
-
SAMPLES_REPO = "Synthard2025KoalAI/synthrad2025_task1"
|
| 73 |
-
# samples_dir = os.path.join(repo_dir, "samples")
|
| 74 |
-
|
| 75 |
-
SAMPLE_MAP = {
|
| 76 |
-
"Abdomen (sample)": {
|
| 77 |
-
"region": "Abdomen",
|
| 78 |
-
"mri": os.path.join(repo_dir, "Abdomen", "cbct.mha"),
|
| 79 |
-
"mask": os.path.join(repo_dir,"Abdomen", "mask2.mha"),
|
| 80 |
-
},
|
| 81 |
-
"Head and Neck (sample)": {
|
| 82 |
-
"region": "Head and Neck",
|
| 83 |
-
"mri": os.path.join(repo_dir, "Head and Neck", "cbct.mha"),
|
| 84 |
-
"mask": os.path.join(repo_dir, "Head and Neck", "mask2.mha"),
|
| 85 |
-
},
|
| 86 |
-
"Thorax (sample)": {
|
| 87 |
-
"region": "Thorax",
|
| 88 |
-
"mri": os.path.join(repo_dir, "Thorax", "cbct.mha"),
|
| 89 |
-
"mask": os.path.join(repo_dir, "Thorax", "mask2.mha"),
|
| 90 |
-
},
|
| 91 |
-
}
|
| 92 |
-
c1, c2, c3 = st.columns([2, 2, 1])
|
| 93 |
-
|
| 94 |
-
if src == "Upload":
|
| 95 |
-
with c1:
|
| 96 |
-
mri_file = st.file_uploader("MRI volume (.nii/.nii.gz/.mha)", type=["nii", "nii.gz", "mha"], key="mri")
|
| 97 |
-
with c2:
|
| 98 |
-
mask_file = st.file_uploader("Mask volume (.nii/.nii.gz/.mha)", type=["nii", "nii.gz", "mha"], key="mask")
|
| 99 |
-
with c3:
|
| 100 |
-
region = st.radio("Region", ["Head and Neck", "Abdomen", "Thorax"], index=1)
|
| 101 |
-
inputs_ready = (mri_file is not None) and (mask_file is not None)
|
| 102 |
-
region_for_run = region
|
| 103 |
-
else:
|
| 104 |
-
with c1:
|
| 105 |
-
sample_key = st.selectbox("Choose a sample", list(SAMPLE_MAP.keys()))
|
| 106 |
-
with c2:
|
| 107 |
-
st.markdown("Region (fixed by sample)")
|
| 108 |
-
st.write(f"**{SAMPLE_MAP[sample_key]['region']}**")
|
| 109 |
-
with c3:
|
| 110 |
-
st.markdown(" ", unsafe_allow_html=True)
|
| 111 |
-
inputs_ready = (sample_key is not None)
|
| 112 |
-
region_for_run = SAMPLE_MAP[sample_key]["region"]
|
| 113 |
-
|
| 114 |
-
run_btn = st.button("Run", type="primary", disabled=not inputs_ready)
|
| 115 |
-
|
| 116 |
-
def _read_sitk_from_uploaded(f):
|
| 117 |
-
suffix = ".nii.gz" if f.name.endswith(".nii.gz") else os.path.splitext(f.name)[1]
|
| 118 |
-
bio = io.BytesIO(f.read())
|
| 119 |
-
import tempfile
|
| 120 |
-
with tempfile.NamedTemporaryFile(suffix=suffix, delete=False) as tmp:
|
| 121 |
-
tmp.write(bio.getvalue()); tmp.flush(); path = tmp.name
|
| 122 |
-
img = sitk.ReadImage(path)
|
| 123 |
-
try: os.remove(path)
|
| 124 |
-
except Exception: pass
|
| 125 |
-
return img
|
| 126 |
-
|
| 127 |
-
def _read_sitk_from_path(path):
|
| 128 |
-
if not os.path.exists(path):
|
| 129 |
-
st.error(f"Sample file missing: {path}")
|
| 130 |
-
st.stop()
|
| 131 |
-
return sitk.ReadImage(path)
|
| 132 |
-
|
| 133 |
-
def _norm2u8(slice2d):
|
| 134 |
-
s = slice2d.astype(np.float32)
|
| 135 |
-
s = (s - np.percentile(s, 1)) / (np.percentile(s, 99) - np.percentile(s, 1) + 1e-6)
|
| 136 |
-
s = np.clip(s, 0, 1)
|
| 137 |
-
return (s * 255).astype(np.uint8)
|
| 138 |
-
if run_btn:
|
| 139 |
-
with st.spinner("Running nnUNetv2 SynthradAlgorithm..."):
|
| 140 |
-
if src == "Upload":
|
| 141 |
-
mr_img = _read_sitk_from_uploaded(mri_file)
|
| 142 |
-
mask_img = _read_sitk_from_uploaded(mask_file)
|
| 143 |
-
else:
|
| 144 |
-
sample = SAMPLE_MAP[sample_key]
|
| 145 |
-
mr_img = _read_sitk_from_path(sample["mri"])
|
| 146 |
-
mask_img = _read_sitk_from_path(sample["mask"])
|
| 147 |
-
|
| 148 |
-
st.session_state.orig_meta = (mr_img.GetSpacing(), mr_img.GetOrigin(), mr_img.GetDirection())
|
| 149 |
-
out_img = st.session_state.algo.predict({"image": mr_img, "mask": mask_img, "region": region_for_run})
|
| 150 |
-
st.session_state.synth_ct = out_img
|
| 151 |
-
st.session_state.vol_np = sitk.GetArrayFromImage(out_img).astype(np.float32)
|
| 152 |
-
st.session_state.input_mr = mr_img
|
| 153 |
-
st.session_state.input_mask = mask_img
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
if st.session_state.vol_np is None:
|
| 158 |
-
st.info("Please upload MRI + Mask or Sample, then Run")
|
| 159 |
-
else:
|
| 160 |
-
mr_lps = sitk.DICOMOrient(st.session_state.synth_ct, "LPS")
|
| 161 |
-
vol = sitk.GetArrayFromImage(mr_lps).astype(np.float32)
|
| 162 |
-
# vol = st.session_state.vol_np # shape: (D, H, W) = (Z, Y, X)
|
| 163 |
-
D, H, W = vol.shape
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
# out_path = "synth_ct.nii.gz"
|
| 167 |
-
# sitk.WriteImage(st.session_state.synth_ct, out_path)
|
| 168 |
-
# with open(out_path, "rb") as f:
|
| 169 |
-
# st.download_button(
|
| 170 |
-
# label="Download synthetic CT (.nii.gz)",
|
| 171 |
-
# data=f.read(),
|
| 172 |
-
# file_name="synth_ct.nii.gz",
|
| 173 |
-
# mime="application/octet-stream",
|
| 174 |
-
# )
|
| 175 |
-
col_d1, col_d2, col_d3 = st.columns(3)
|
| 176 |
-
|
| 177 |
-
with col_d3:
|
| 178 |
-
_download_sitk_image(
|
| 179 |
-
st.session_state.synth_ct,
|
| 180 |
-
file_name="synth_ct.nii.gz",
|
| 181 |
-
label="Download synthetic CT"
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
with col_d1:
|
| 185 |
-
if st.session_state.input_mr is not None:
|
| 186 |
-
_download_sitk_image(
|
| 187 |
-
st.session_state.input_mr,
|
| 188 |
-
file_name="input_mri.nii.gz", # 如果你其实是 CBCT,可改成 input_cbct.nii.gz
|
| 189 |
-
label="Download input MRI/CBCT"
|
| 190 |
-
)
|
| 191 |
-
else:
|
| 192 |
-
st.button("Download input MRI/CBCT", disabled=True)
|
| 193 |
-
|
| 194 |
-
with col_d2:
|
| 195 |
-
if st.session_state.input_mask is not None:
|
| 196 |
-
# (可选)确保掩膜是整型:mask = sitk.Cast(st.session_state.input_mask, sitk.sitkUInt16)
|
| 197 |
-
_download_sitk_image(
|
| 198 |
-
st.session_state.input_mask,
|
| 199 |
-
file_name="input_mask.nii.gz",
|
| 200 |
-
label="Download input Mask"
|
| 201 |
-
)
|
| 202 |
-
else:
|
| 203 |
-
st.button("Download input Mask", disabled=True)
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|