amr.malik commited on
Commit
4cff171
·
1 Parent(s): 34bec45

add app.py etc.

Browse files
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The A.M.A.Z.I.N.G B.E.A.R.D D.E.T.E.C.T.I.V.E ! ! !
2
+
3
+ import gradio as gr
4
+ from fastai.vision.all import *
5
+ import skimage
6
+
7
+ learn = load_learner('export.pkl')
8
+
9
+ labels = learn.dls.vocab
10
+ def predict(img):
11
+ img = PILImage.create(img)
12
+ pred,pred_idx,probs = learn.predict(img)
13
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
14
+
15
+ title = "The A.M.A.Z.I.N.G B.E.A.R.D D.E.T.E.C.T.I.V.E ! ! !"
16
+ description = "A Beard Detector created using a pretrained ResNet50 model fine tuned using fast.ai"
17
+ article="<p style='text-align: center'><a href='https://www.kaggle.com/code/mikemoloch/the-amazing-beard-detector' target='_blank'>Kaggle Notebook</a></p>"
18
+ examples = [ 'beard_00000111.jpg', 'beard_00000119.jpg', 'beard_00000129.jpg', 'beard_00000162.jpg', 'clean_00000115.jpg', 'clean_00000138.jpeg', 'clean_00000197.jpg' ]
19
+ interpretation='default'
20
+ enable_queue=True
21
+
22
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
beard_00000111.jpg ADDED
beard_00000119.jpg ADDED
beard_00000129.jpg ADDED
beard_00000162.jpg ADDED
clean_00000115.jpg ADDED
clean_00000138.jpeg ADDED
clean_00000197.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ fastai
2
+ scikit-image