EU-IA commited on
Commit
20cd2b7
·
verified ·
1 Parent(s): 8020a28

Update deformes4D_engine.py

Browse files
Files changed (1) hide show
  1. deformes4D_engine.py +260 -120
deformes4D_engine.py CHANGED
@@ -1,139 +1,279 @@
1
- # aduc_orchestrator.py
2
  # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
  #
4
- # Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
5
- # sob os termos da Licença Pública Geral Affero GNU...
6
- # AVISO DE PATENTE PENDENTE: Consulte NOTICE.md.
 
 
 
 
 
7
 
8
  import os
9
  import time
10
- import shutil
 
 
11
  import logging
12
- import gradio as gr
13
  from PIL import Image, ImageOps
 
 
14
  import subprocess
15
- from pathlib import Path
16
- import json
17
 
18
- from deformes4D_engine import Deformes4DEngine
19
  from ltx_manager_helpers import ltx_manager_singleton
20
- from gemini_helpers import gemini_singleton
21
- from image_specialist import image_specialist_singleton
 
22
 
23
- # Configuração de logging centralizada deve ser feita no app.py
24
  logger = logging.getLogger(__name__)
25
 
26
- class AducDirector:
27
- def __init__(self, workspace_dir):
 
 
 
 
 
 
 
28
  self.workspace_dir = workspace_dir
29
- os.makedirs(self.workspace_dir, exist_ok=True)
30
- self.state = {}
31
- logger.info(f"O palco está pronto. Workspace em '{self.workspace_dir}'.")
32
-
33
- def reset(self):
34
- os.makedirs(self.workspace_dir, exist_ok=True)
35
- self.state = {}
36
- logger.info("Partitura limpa. Estado do Diretor reiniciado.")
37
-
38
- def update_state(self, key, value):
39
- log_value = value if not isinstance(value, (dict, list)) and not hasattr(value, 'shape') else f"Objeto complexo"
40
- logger.info(f"Anotando na partitura: Estado '{key}' atualizado.")
41
- self.state[key] = value
42
-
43
- def get_state(self, key, default=None):
44
- return self.state.get(key, default)
45
-
46
- class AducOrchestrator:
47
- def __init__(self, workspace_dir: str):
48
- self.director = AducDirector(workspace_dir)
49
- self.editor = Deformes4DEngine(ltx_manager_singleton, workspace_dir)
50
- self.painter = image_specialist_singleton
51
- logger.info("Maestro ADUC está no pódio. Músicos (especialistas) prontos.")
52
-
53
- def process_image_for_story(self, image_path: str, size: int, filename: str = None) -> str:
54
- """
55
- Pré-processa uma imagem de referência: converte para RGB, redimensiona para um
56
- quadrado e salva no diretório de trabalho.
57
- """
58
- img = Image.open(image_path).convert("RGB")
59
- img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
60
-
61
- if filename:
62
- processed_path = os.path.join(self.director.workspace_dir, filename)
63
- else:
64
- processed_path = os.path.join(self.director.workspace_dir, f"ref_processed_{int(time.time()*1000)}.png")
65
-
66
- img_square.save(processed_path)
67
- logger.info(f"Imagem de referência processada e salva em: {processed_path}")
68
- return processed_path
69
-
70
- def task_generate_storyboard(self, prompt, num_keyframes, processed_ref_image_paths, progress):
71
- logger.info(f"Ato 1, Cena 1: Roteiro. Instruindo o Roteirista (Gemini) a criar {num_keyframes} cenas a partir de: '{prompt}'")
72
- progress(0.2, desc="Consultando Roteirista IA (Gemini)...")
73
- storyboard = gemini_singleton.generate_storyboard(prompt, num_keyframes, processed_ref_image_paths)
74
- logger.info(f"Roteirista retornou a partitura: {storyboard}")
75
- self.director.update_state("storyboard", storyboard)
76
- self.director.update_state("processed_ref_paths", processed_ref_image_paths)
77
- return storyboard, processed_ref_image_paths[0], gr.update(visible=True, open=True)
78
-
79
- def task_select_keyframes(self, storyboard, base_ref_paths, pool_ref_paths):
80
- logger.info(f"Ato 1, Cena 2 (Alternativa): Fotografia. Instruindo o Editor (Gemini) a selecionar {len(storyboard)} keyframes de um banco de {len(pool_ref_paths)} imagens.")
81
- selected_paths = gemini_singleton.select_keyframes_from_pool(storyboard, base_ref_paths, pool_ref_paths)
82
- logger.info(f"Editor selecionou as seguintes cenas: {[os.path.basename(p) for p in selected_paths]}")
83
- self.director.update_state("keyframes", selected_paths)
84
- return selected_paths
85
-
86
- def task_generate_keyframes(self, storyboard, initial_ref_path, global_prompt, keyframe_resolution, progress_callback_factory=None):
87
- """
88
- Delega a tarefa de geração de keyframes para o ImageSpecialist.
89
- """
90
- logger.info(f"Ato 1, Cena 2: Direção de Arte. Delegando ao Especialista de Imagem.")
91
 
92
- general_ref_paths = self.director.get_state("processed_ref_paths", [])
 
 
 
 
93
 
94
- final_keyframes = self.painter.generate_keyframes_from_storyboard(
95
- storyboard=storyboard,
96
- initial_ref_path=initial_ref_path,
97
- global_prompt=global_prompt,
98
- keyframe_resolution=int(keyframe_resolution),
99
- general_ref_paths=general_ref_paths,
100
- progress_callback_factory=progress_callback_factory
101
- )
 
 
 
 
 
102
 
103
- self.director.update_state("keyframes", final_keyframes)
104
- logger.info("Maestro: Especialista de Imagem concluiu a geração dos keyframes.")
105
- return final_keyframes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
- def task_produce_final_movie_with_feedback(self, keyframes, global_prompt, seconds_per_fragment,
108
- overlap_percent, echo_frames,
109
- handler_strength,
110
- destination_convergence_strength,
111
- video_resolution, use_continuity_director,
112
- use_cinematographer, progress):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
- logger.info("AducOrchestrator: Delegando a produção do filme completo ao Deformes4DEngine.")
115
- storyboard = self.director.get_state("storyboard", [])
116
-
117
- # --- CORREÇÃO AQUI ---
118
- for update in self.editor.generate_full_movie(
119
- keyframes=keyframes,
120
- global_prompt=global_prompt,
121
- storyboard=storyboard,
122
- seconds_per_fragment=seconds_per_fragment,
123
- overlap_percent=overlap_percent,
124
- echo_frames=echo_frames,
125
- handler_strength=handler_strength,
126
- destination_convergence_strength=destination_convergence_strength,
127
- video_resolution=video_resolution,
128
- use_continuity_director=use_continuity_director,
129
- progress=progress # <-- ADICIONADO o argumento 'progress'
130
- ):
131
- if "fragment_path" in update and update["fragment_path"]:
132
- yield {"fragment_path": update["fragment_path"]}
133
- elif "final_path" in update and update["final_path"]:
134
- final_movie_path = update["final_path"]
135
- self.director.update_state("final_video_path", final_movie_path)
136
- yield {"final_path": final_movie_path}
137
- break
138
-
139
- logger.info("AducOrchestrator: Produção do filme concluída e estado do diretor atualizado.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # deformes4D_engine.py
2
  # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
  #
4
+ #
5
+ # MODIFICATIONS FOR ADUC-SDR:
6
+ # Copyright (C) 2025 Carlos Rodrigues dos Santos. All rights reserved.
7
+ #
8
+ # This file is part of the ADUC-SDR project. It contains the core logic for
9
+ # video fragment generation, latent manipulation, and dynamic editing,
10
+ # governed by the ADUC orchestrator.
11
+ # This component is licensed under the GNU Affero General Public License v3.0.
12
 
13
  import os
14
  import time
15
+ import imageio
16
+ import numpy as np
17
+ import torch
18
  import logging
 
19
  from PIL import Image, ImageOps
20
+ from dataclasses import dataclass
21
+ import gradio as gr
22
  import subprocess
23
+ import random
24
+ import gc
25
 
26
+ from audio_specialist import audio_specialist_singleton
27
  from ltx_manager_helpers import ltx_manager_singleton
28
+ from flux_kontext_helpers import flux_kontext_singleton
29
+ from gemini_helpers import gemini_singleton
30
+ from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
31
 
 
32
  logger = logging.getLogger(__name__)
33
 
34
+ @dataclass
35
+ class LatentConditioningItem:
36
+ latent_tensor: torch.Tensor
37
+ media_frame_number: int
38
+ conditioning_strength: float
39
+
40
+ class Deformes4DEngine:
41
+ def __init__(self, ltx_manager, workspace_dir="deformes_workspace"):
42
+ self.ltx_manager = ltx_manager
43
  self.workspace_dir = workspace_dir
44
+ self._vae = None
45
+ self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
46
+ logger.info("Especialista Deformes4D (SDR Executor) inicializado.")
47
+
48
+ @property
49
+ def vae(self):
50
+ if self._vae is None:
51
+ self._vae = self.ltx_manager.workers[0].pipeline.vae
52
+ self._vae.to(self.device); self._vae.eval()
53
+ return self._vae
54
+
55
+ def save_latent_tensor(self, tensor: torch.Tensor, path: str):
56
+ torch.save(tensor.cpu(), path)
57
+ logger.info(f"Tensor latente salvo em: {path}")
58
+
59
+ def load_latent_tensor(self, path: str) -> torch.Tensor:
60
+ tensor = torch.load(path, map_location=self.device)
61
+ logger.info(f"Tensor latente carregado de: {path} para o dispositivo {self.device}")
62
+ return tensor
63
+
64
+ @torch.no_grad()
65
+ def pixels_to_latents(self, tensor: torch.Tensor) -> torch.Tensor:
66
+ tensor = tensor.to(self.device, dtype=self.vae.dtype)
67
+ return vae_encode(tensor, self.vae, vae_per_channel_normalize=True)
68
+
69
+ @torch.no_grad()
70
+ def latents_to_pixels(self, latent_tensor: torch.Tensor, decode_timestep: float = 0.05) -> torch.Tensor:
71
+ latent_tensor = latent_tensor.to(self.device, dtype=self.vae.dtype)
72
+ timestep_tensor = torch.tensor([decode_timestep] * latent_tensor.shape[0], device=self.device, dtype=latent_tensor.dtype)
73
+ return vae_decode(latent_tensor, self.vae, is_video=True, timestep=timestep_tensor, vae_per_channel_normalize=True)
74
+
75
+ def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24):
76
+ if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return
77
+ video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0)
78
+ video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0
79
+ video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8)
80
+ with imageio.get_writer(path, fps=fps, codec='libx264', quality=8) as writer:
81
+ for frame in video_np: writer.append_data(frame)
82
+ logger.info(f"Vídeo salvo em: {path}")
83
+
84
+ def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image:
85
+ if image.size != target_resolution:
86
+ logger.info(f" - AÇÃO: Redimensionando imagem de {image.size} para {target_resolution} antes da conversão para latente.")
87
+ return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS)
88
+ return image
89
+
90
+ def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor:
91
+ image_np = np.array(pil_image).astype(np.float32) / 255.0
92
+ tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
93
+ tensor = (tensor * 2.0) - 1.0
94
+ return self.pixels_to_latents(tensor)
 
 
 
 
 
 
 
 
 
 
 
95
 
96
+ def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
97
+ silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
98
+ pixel_tensor = self.latents_to_pixels(latent_tensor)
99
+ self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
100
+ del pixel_tensor; gc.collect()
101
 
102
+ try:
103
+ result = subprocess.run(
104
+ ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
105
+ capture_output=True, text=True, check=True)
106
+ frag_duration = float(result.stdout.strip())
107
+ except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
108
+ logger.warning(f"ffprobe falhou em {os.path.basename(silent_video_path)}. Calculando duração manualmente.")
109
+ num_pixel_frames = latent_tensor.shape[2] * 8
110
+ frag_duration = num_pixel_frames / 24.0
111
+
112
+ video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
113
+ video_path=silent_video_path, prompt=audio_prompt,
114
+ duration_seconds=frag_duration)
115
 
116
+ if os.path.exists(silent_video_path):
117
+ os.remove(silent_video_path)
118
+ return video_with_audio_path
119
+
120
+ def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
121
+ final_ltx_params = {
122
+ **ltx_params,
123
+ 'width': target_resolution[0], 'height': target_resolution[1],
124
+ 'video_total_frames': total_frames_to_generate, 'video_fps': 24,
125
+ 'current_fragment_index': int(time.time()),
126
+ 'conditioning_items_data': conditioning_items
127
+ }
128
+ new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
129
+ return new_full_latents
130
+
131
+ def concatenate_videos_ffmpeg(self, video_paths: list[str], output_path: str) -> str:
132
+ if not video_paths:
133
+ raise gr.Error("Nenhum fragmento de vídeo para montar.")
134
+ list_file_path = os.path.join(self.workspace_dir, "concat_list.txt")
135
+ with open(list_file_path, 'w', encoding='utf-8') as f:
136
+ for path in video_paths:
137
+ f.write(f"file '{os.path.abspath(path)}'\n")
138
+ cmd_list = ['ffmpeg', '-y', '-f', 'concat', '-safe', '0', '-i', list_file_path, '-c', 'copy', output_path]
139
+ logger.info("Executando concatenação FFmpeg...")
140
+ try:
141
+ subprocess.run(cmd_list, check=True, capture_output=True, text=True)
142
+ except subprocess.CalledProcessError as e:
143
+ logger.error(f"Erro no FFmpeg: {e.stderr}")
144
+ raise gr.Error(f"Falha na montagem final do vídeo. Detalhes: {e.stderr}")
145
+ return output_path
146
 
147
+ def generate_full_movie(self,
148
+ keyframes: list,
149
+ global_prompt: str,
150
+ storyboard: list,
151
+ seconds_per_fragment: float,
152
+ overlap_percent: int,
153
+ echo_frames: int,
154
+ handler_strength: float,
155
+ destination_convergence_strength: float,
156
+ video_resolution: int,
157
+ use_continuity_director: bool,
158
+ progress: gr.Progress = gr.Progress()):
159
+
160
+ base_ltx_params = {
161
+ "guidance_scale": 1.0,
162
+ "stg_scale": 0.0,
163
+ "rescaling_scale": 0.15,
164
+ "num_inference_steps": 7,
165
+ }
166
+
167
+ keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
168
+ video_clips_paths, story_history, audio_history = [], "", "This is the beginning of the film."
169
+ target_resolution_tuple = (video_resolution, video_resolution)
170
+ n_trim_latents = self._quantize_to_multiple(int(seconds_per_fragment * 24 * (overlap_percent / 100.0)), 8)
171
+
172
+ previous_latents_path = None
173
+ num_transitions_to_generate = len(keyframe_paths) - 1
174
 
175
+ for i in range(num_transitions_to_generate):
176
+ progress((i + 1) / num_transitions_to_generate, desc=f"Produzindo Transição {i+1}/{num_transitions_to_generate}")
177
+
178
+ start_keyframe_path = keyframe_paths[i]
179
+ destination_keyframe_path = keyframe_paths[i+1]
180
+ present_scene_desc = storyboard[i]
181
+
182
+ is_first_fragment = previous_latents_path is None
183
+
184
+ if is_first_fragment:
185
+ transition_type = "start"
186
+ motion_prompt = gemini_singleton.get_initial_motion_prompt(
187
+ global_prompt, start_keyframe_path, destination_keyframe_path, present_scene_desc
188
+ )
189
+ else:
190
+ past_keyframe_path = keyframe_paths[i-1]
191
+ past_scene_desc = storyboard[i-1]
192
+ future_scene_desc = storyboard[i+1] if (i+1) < len(storyboard) else "A cena final."
193
+ decision = gemini_singleton.get_cinematic_decision(
194
+ global_prompt=global_prompt, story_history=story_history,
195
+ past_keyframe_path=past_keyframe_path, present_keyframe_path=start_keyframe_path,
196
+ future_keyframe_path=destination_keyframe_path, past_scene_desc=past_scene_desc,
197
+ present_scene_desc=present_scene_desc, future_scene_desc=future_scene_desc
198
+ )
199
+ transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
200
+
201
+ story_history += f"\n- Ato {i+1} ({transition_type}): {motion_prompt}"
202
+
203
+ if use_continuity_director:
204
+ if is_first_fragment:
205
+ audio_prompt = gemini_singleton.get_sound_director_prompt(
206
+ audio_history=audio_history,
207
+ past_keyframe_path=start_keyframe_path, present_keyframe_path=start_keyframe_path,
208
+ future_keyframe_path=destination_keyframe_path, present_scene_desc=present_scene_desc,
209
+ motion_prompt=motion_prompt, future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
210
+ )
211
+ else:
212
+ audio_prompt = gemini_singleton.get_sound_director_prompt(
213
+ audio_history=audio_history, past_keyframe_path=keyframe_paths[i-1],
214
+ present_keyframe_path=start_keyframe_path, future_keyframe_path=destination_keyframe_path,
215
+ present_scene_desc=present_scene_desc, motion_prompt=motion_prompt,
216
+ future_scene_desc=storyboard[i+1] if (i+1) < len(storyboard) else "The final scene."
217
+ )
218
+ else:
219
+ audio_prompt = present_scene_desc
220
+
221
+ audio_history = audio_prompt
222
+
223
+ conditioning_items = []
224
+ current_ltx_params = {**base_ltx_params, "handler_strength": handler_strength, "motion_prompt": motion_prompt}
225
+ total_frames_to_generate = self._quantize_to_multiple(int(seconds_per_fragment * 24), 8) + 1
226
+
227
+ if is_first_fragment:
228
+ img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
229
+ start_latent = self.pil_to_latent(img_start)
230
+ conditioning_items.append(LatentConditioningItem(start_latent, 0, 1.0))
231
+ if transition_type != "cut":
232
+ img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
233
+ destination_latent = self.pil_to_latent(img_dest)
234
+ conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
235
+ else:
236
+ previous_latents = self.load_latent_tensor(previous_latents_path)
237
+ handler_latent = previous_latents[:, :, -1:, :, :]
238
+ trimmed_for_echo = previous_latents[:, :, :-n_trim_latents, :, :] if n_trim_latents > 0 and previous_latents.shape[2] > n_trim_latents else previous_latents
239
+ echo_latents = trimmed_for_echo[:, :, -echo_frames:, :, :]
240
+ handler_frame_position = n_trim_latents + echo_frames
241
+
242
+ conditioning_items.append(LatentConditioningItem(echo_latents, 0, 1.0))
243
+ conditioning_items.append(LatentConditioningItem(handler_latent, handler_frame_position, handler_strength))
244
+ del previous_latents, handler_latent, trimmed_for_echo, echo_latents; gc.collect()
245
+ if transition_type == "continuous":
246
+ img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
247
+ destination_latent = self.pil_to_latent(img_dest)
248
+ conditioning_items.append(LatentConditioningItem(destination_latent, total_frames_to_generate - 1, destination_convergence_strength))
249
+
250
+ new_full_latents = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_to_generate)
251
+
252
+ base_name = f"fragment_{i}_{int(time.time())}"
253
+ new_full_latents_path = os.path.join(self.workspace_dir, f"{base_name}_full.pt")
254
+ self.save_latent_tensor(new_full_latents, new_full_latents_path)
255
+
256
+ previous_latents_path = new_full_latents_path
257
+
258
+ latents_for_video = new_full_latents
259
+
260
+ video_with_audio_path = self._generate_video_and_audio_from_latents(latents_for_video, audio_prompt, base_name)
261
+ video_clips_paths.append(video_with_audio_path)
262
+
263
+
264
+ if transition_type == "cut":
265
+ previous_latents_path = None
266
+
267
+
268
+ yield {"fragment_path": video_with_audio_path}
269
+
270
+ final_movie_path = os.path.join(self.workspace_dir, f"final_movie_{int(time.time())}.mp4")
271
+ self.concatenate_videos_ffmpeg(video_clips_paths, final_movie_path)
272
+
273
+ logger.info(f"Filme completo salvo em: {final_movie_path}")
274
+ yield {"final_path": final_movie_path}
275
+
276
+ def _quantize_to_multiple(self, n, m):
277
+ if m == 0: return n
278
+ quantized = int(round(n / m) * m)
279
+ return m if n > 0 and quantized == 0 else quantized