Spaces:
Sleeping
Sleeping
import os | |
from threading import Lock | |
from typing import Any, Dict, Optional, Tuple | |
import gradio as gr | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.prompts.chat import (ChatPromptTemplate, | |
HumanMessagePromptTemplate, | |
SystemMessagePromptTemplate) | |
from .core.chunking import chunk_file | |
from .core.embedding import embed_files | |
from .core.parsing import read_file | |
VECTOR_STORE = "faiss" | |
MODEL = "openai" | |
EMBEDDING = "openai" | |
MODEL = "gpt-3.5-turbo-16k" | |
K = 5 | |
USE_VERBOSE = True | |
API_KEY = os.environ["OPENAI_API_KEY"] | |
system_template = """ | |
Use the context below to answer questions. You must only use the Context to answer questions. If I ask you about 'the book' or 'this book' or similar references, then answer using the Context. If you cannot find the answer from the Context below, you must respond with | |
"I'm sorry, but I can't find the answer to your question in the book, 'Design by Fire,' by Emily Elizabeth Schlickman and Brett Milligan." All answers must be in English unless you are explicitly asked to translate to a different language. | |
---------------- | |
{context} | |
{chat_history} | |
""" | |
# Create the chat prompt templates | |
messages = [ | |
SystemMessagePromptTemplate.from_template(system_template), | |
HumanMessagePromptTemplate.from_template("{question}") | |
] | |
qa_prompt = ChatPromptTemplate.from_messages(messages) | |
class AnswerConversationBufferMemory(ConversationBufferMemory): | |
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: | |
return super(AnswerConversationBufferMemory, self).save_context(inputs,{'response': outputs['answer']}) | |
def getretriever(): | |
with open("./resources/design-by-fire.pdf", 'rb') as uploaded_file: | |
try: | |
file = read_file(uploaded_file) | |
except Exception as e: | |
print(e) | |
chunked_file = chunk_file(file, chunk_size=512, chunk_overlap=0) | |
folder_index = embed_files( | |
files=[chunked_file], | |
embedding=EMBEDDING, | |
vector_store=VECTOR_STORE, | |
openai_api_key=API_KEY, | |
) | |
return folder_index.index.as_retriever(verbose=True, search_type="similarity", search_kwargs={"k": K}) | |
retriever = getretriever() | |
def getanswer(chain, question, history): | |
if hasattr(chain, "value"): | |
chain = chain.value | |
if hasattr(history, "value"): | |
history = history.value | |
if hasattr(question, "value"): | |
question = question.value | |
history = history or [] | |
lock = Lock() | |
lock.acquire() | |
try: | |
output = chain({"question": question}) | |
output = output["answer"] | |
history.append((question, output)) | |
except Exception as e: | |
raise e | |
finally: | |
lock.release() | |
return history, history, gr.update(value="") | |
def load_chain(inputs = None): | |
llm = ChatOpenAI( | |
openai_api_key=API_KEY, | |
model_name=MODEL, | |
verbose=True) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
return_source_documents=USE_VERBOSE, | |
memory=AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True), | |
verbose=USE_VERBOSE, | |
combine_docs_chain_kwargs={"prompt": qa_prompt}) | |
return chain | |
CSS =""" | |
.contain { display: flex; flex-direction: column; } | |
.gradio-container { height: 100vh !important; } | |
#component-0 { height: 100%; } | |
#chatbot { flex-grow: 1; overflow: auto;} | |
""" | |
with gr.Blocks() as block: | |
with gr.Row(): | |
with gr.Column(scale=0.75): | |
with gr.Row(): | |
gr.Markdown("<h1>Design by Fire</h1>") | |
with gr.Row(): | |
gr.Markdown("by Emily Elizabeth Schlickman and Brett Milligan") | |
chatbot = gr.Chatbot(elem_id="chatbot").style(height=600) | |
with gr.Row(): | |
message = gr.Textbox( | |
label="", | |
placeholder="Design by Fire", | |
lines=1, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Send", variant="primary", scale=1) | |
state = gr.State() | |
chain_state = gr.State(load_chain) | |
submit.click(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message]) | |
message.submit(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message]) | |
with gr.Column(scale=0.25): | |
with gr.Row(): | |
gr.Markdown("<h1><center>Suggestions</center></h1>") | |
ex1 = gr.Button(value="What are the main factors and trends discussed in the book that contribute to the changing behavior of wildfires?", variant="primary") | |
ex1.click(getanswer, inputs=[chain_state, ex1, state], outputs=[chatbot, state, message]) | |
ex2 = gr.Button(value="How does the book explore the relationship between fire and different landscapes, such as wilderness and urban areas?", variant="primary") | |
ex2.click(getanswer, inputs=[chain_state, ex2, state], outputs=[chatbot, state, message]) | |
ex3 = gr.Button(value="What are the three approaches to designing with fire that the book presents?", variant="primary") | |
ex3.click(getanswer, inputs=[chain_state, ex3, state], outputs=[chatbot, state, message]) | |
block.launch(debug=True) |