freakonomics / src /app.py
Adrian Cowham
do not rephrase the question
8c14b99
import os
from threading import Lock
from typing import Any, Dict, Optional, Tuple
import gradio as gr
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts.chat import (ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate)
from src.core.chunking import chunk_file
from src.core.embedding import embed_files
from src.core.parsing import read_file
VECTOR_STORE = "faiss"
MODEL = "openai"
EMBEDDING = "openai"
MODEL = "gpt-3.5-turbo-16k"
K = 5
USE_VERBOSE = True
API_KEY = os.environ["OPENAI_API_KEY"]
system_template = """
You are a helpful assistant responding to inqueries about the content of the book Freakonomics, by Steven D. Levitt and Stephen J. Dubner. The context below contains excerpts from the book. You must only use the information in the context below to formulate your responses. If there is not enough information in the context to formulate a response, you must respond with
"I'm sorry, but I can't find the answer to your question in, the book Freakonomics."
Here is the context:
{context}
{chat_history}
"""
# Create the chat prompt templates
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
qa_prompt = ChatPromptTemplate.from_messages(messages)
class AnswerConversationBufferMemory(ConversationBufferMemory):
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
return super(AnswerConversationBufferMemory, self).save_context(inputs,{'response': outputs['answer']})
def getretriever():
with open("./resources/Freakonomics.pdf", 'rb') as uploaded_file:
try:
file = read_file(uploaded_file)
except Exception as e:
print(e)
chunked_file = chunk_file(file, chunk_size=512, chunk_overlap=0)
folder_index = embed_files(
files=[chunked_file],
embedding=EMBEDDING,
vector_store=VECTOR_STORE,
openai_api_key=API_KEY,
)
return folder_index.index.as_retriever(verbose=True, search_type="similarity", search_kwargs={"k": K})
retriever = getretriever()
def getanswer(chain, question, history):
if hasattr(chain, "value"):
chain = chain.value
if hasattr(history, "value"):
history = history.value
if hasattr(question, "value"):
question = question.value
history = history or []
lock = Lock()
lock.acquire()
try:
output = chain({"question": question})
output = output["answer"]
history.append((question, output))
except Exception as e:
raise e
finally:
lock.release()
return history, history, gr.update(value="")
def load_chain(inputs = None):
llm = ChatOpenAI(
openai_api_key=API_KEY,
model_name=MODEL,
verbose=True)
chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
return_source_documents=USE_VERBOSE,
memory=AnswerConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=USE_VERBOSE,
combine_docs_chain_kwargs={"prompt": qa_prompt})
chain.rephrase_question = False
return chain
with gr.Blocks() as block:
with gr.Row():
with gr.Column(scale=0.75):
with gr.Row():
gr.Markdown("<h1>Freakonomics</h1>")
with gr.Row():
gr.Markdown("by Steven D. Levitt and Stephen J. Dubner")
chatbot = gr.Chatbot(elem_id="chatbot").style(height=600)
with gr.Row():
message = gr.Textbox(
label="",
placeholder="Freakonomics",
lines=1,
)
with gr.Row():
submit = gr.Button(value="Send", variant="primary", scale=1)
state = gr.State()
chain_state = gr.State(load_chain)
submit.click(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
message.submit(getanswer, inputs=[chain_state, message, state], outputs=[chatbot, state, message])
with gr.Column(scale=0.25):
with gr.Row():
gr.Markdown("<h1><center>Suggestions</center></h1>")
ex1 = gr.Button(value="How does the book challenge conventional wisdom?", variant="primary")
ex1.click(getanswer, inputs=[chain_state, ex1, state], outputs=[chatbot, state, message])
ex2 = gr.Button(value="What are some of the surprising and counterintuitive examples from the book?", variant="primary")
ex2.click(getanswer, inputs=[chain_state, ex2, state], outputs=[chatbot, state, message])
ex3 = gr.Button(value="How does the book explore the role of incentives?", variant="primary")
ex3.click(getanswer, inputs=[chain_state, ex3, state], outputs=[chatbot, state, message])
block.launch(debug=True)