Spaces:
Runtime error
Runtime error
import json | |
import logging | |
import os | |
import sys | |
from threading import Lock | |
import gradio as gr | |
import s3fs | |
import torch | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from llama_index import (ServiceContext, StorageContext, | |
load_index_from_storage, set_global_service_context) | |
from llama_index.agent import ContextRetrieverOpenAIAgent, OpenAIAgent | |
from llama_index.indices.vector_store import VectorStoreIndex | |
from llama_index.llms import ChatMessage, MessageRole, OpenAI | |
from llama_index.prompts import ChatPromptTemplate, PromptTemplate | |
from llama_index.query_engine import RetrieverQueryEngine | |
from llama_index.response_synthesizers import get_response_synthesizer | |
from llama_index.retrievers import RecursiveRetriever | |
from llama_index.tools import QueryEngineTool, ToolMetadata | |
from llama_index.vector_stores import PGVectorStore | |
from sqlalchemy import make_url | |
def get_embed_model(): | |
model_kwargs = {'device': 'cpu'} | |
if torch.cuda.is_available(): | |
model_kwargs['device'] = 'cuda' | |
if torch.backends.mps.is_available(): | |
model_kwargs['device'] = 'mps' | |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity | |
print("Loading model...") | |
try: | |
model_norm = HuggingFaceEmbeddings( | |
model_name="thenlper/gte-small", | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs, | |
) | |
except Exception as exception: | |
print(f"Model not found. Loading fake model...{exception}") | |
exit() | |
print("Model loaded.") | |
return model_norm | |
embed_model = get_embed_model() | |
llm = OpenAI("gpt-4") | |
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) | |
set_global_service_context(service_context) | |
s3 = s3fs.S3FileSystem( | |
key=os.environ["AWS_CANONICAL_KEY"], | |
secret=os.environ["AWS_CANONICAL_SECRET"], | |
) | |
titles = s3.ls("f150-user-manual/recursive-agent/") | |
titles = list(map(lambda x: x.split("/")[-1], titles)) | |
agents = {} | |
for title in titles: | |
if(title == "vector_index"): | |
continue | |
print(title) | |
# build vector index | |
storage_context = StorageContext.from_defaults(persist_dir=f"f150-user-manual/recursive-agent/{title}/vector_index", fs=s3) | |
vector_index = load_index_from_storage(storage_context) | |
# define query engines | |
vector_query_engine = vector_index.as_query_engine( | |
similarity_top_k=2, | |
verbose=True | |
) | |
agents[title] = vector_query_engine | |
print(f"Agents: {len(agents)}") | |
storage_context = StorageContext.from_defaults(persist_dir=f"f150-user-manual/recursive-agent/vector_index", fs=s3) | |
top_level_vector_index = load_index_from_storage(storage_context) | |
vector_retriever = top_level_vector_index.as_retriever(similarity_top_k=1) | |
recursive_retriever = RecursiveRetriever( | |
"vector", | |
retriever_dict={"vector": vector_retriever}, | |
query_engine_dict=agents, | |
verbose=True, | |
query_response_tmpl="{response}" | |
) | |
lock = Lock() | |
def predict(message): | |
print(message) | |
lock.acquire() | |
try: | |
output = recursive_retriever.retrieve(message)[0] | |
output = output.get_text() | |
except Exception as e: | |
print(e) | |
raise e | |
finally: | |
lock.release() | |
return output | |
def getanswer(question, history): | |
print("getting answer") | |
if hasattr(history, "value"): | |
history = history.value | |
if hasattr(question, "value"): | |
question = question.value | |
history = history or [] | |
lock.acquire() | |
try: | |
output = recursive_retriever.retrieve(question)[0] | |
history.append((question, output.get_text())) | |
except Exception as e: | |
raise e | |
finally: | |
lock.release() | |
return history, history, gr.update(value="") | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=0.75): | |
with gr.Row(): | |
gr.Markdown("<h1>F150 User Manual</h1>") | |
chatbot = gr.Chatbot(elem_id="chatbot").style(height=600) | |
with gr.Row(): | |
message = gr.Textbox( | |
label="", | |
placeholder="F150 User Manual", | |
lines=1, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Send", variant="primary", scale=1) | |
state = gr.State() | |
submit.click(getanswer, inputs=[message, state], outputs=[chatbot, state, message]) | |
message.submit(getanswer, inputs=[message, state], outputs=[chatbot, state, message]) | |
predictBtn = gr.Button(value="Predict", visible=False) | |
predictBtn.click(predict, inputs=[message], outputs=[message]) | |
demo.launch(debug=True) |