|
from gtts import gTTS
|
|
from transformers import pipeline
|
|
import gradio as gr
|
|
import uuid
|
|
|
|
asr = pipeline('automatic-speech-recognition', "facebook/wav2vec2-conformer-rope-large-960h-ft")
|
|
corrector = pipeline("text2text-generation", model="pszemraj/grammar-synthesis-small")
|
|
|
|
transcribe = lambda audio: asr(audio)['text'].lower()
|
|
|
|
def to_audio(s):
|
|
audio_path = f'/tmp/{uuid.uuid4()}.mp3'
|
|
tts = gTTS(s, tld='us')
|
|
tts.save(audio_path)
|
|
return audio_path
|
|
|
|
|
|
|
|
def transcription(audio, history):
|
|
if audio:
|
|
message = transcribe(audio)
|
|
history.append(( (audio, ) , message))
|
|
results = corrector(message)
|
|
results = '\n'.join([t['generated_text'] for t in results])
|
|
history.append( (None, f'**[Grammar and examples]**\n {results}') )
|
|
|
|
return history
|
|
|
|
def chat(message, history):
|
|
audio_path = to_audio(message)
|
|
history.append((message, (audio_path,)))
|
|
results = corrector(message)
|
|
results = '\n'.join([t['generated_text'] for t in results])
|
|
history.append( (None, f'**[Grammar and examples]**\n {results}') )
|
|
|
|
return None, history
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as learning:
|
|
gr.Markdown('# The main aim of this app is to help English learners to speak fluently.')
|
|
|
|
chatbot = gr.Chatbot()
|
|
|
|
with gr.Row():
|
|
message = gr.Textbox(label='Send your message to TTS')
|
|
microphone = gr.Audio(label="Transcribe", source="microphone", type="filepath")
|
|
|
|
microphone.change(transcription, [microphone, chatbot], [chatbot])
|
|
microphone.change(lambda:None, None, microphone)
|
|
message.submit(chat, [message, chatbot], [message, chatbot])
|
|
|
|
learning.launch() |