Spaces:
Sleeping
Sleeping
| import re | |
| import pandas as pd | |
| import numpy as np | |
| import gradio as gr | |
| import plotly.graph_objects as go | |
| from sklearn.experimental import enable_iterative_imputer # noqa: F401 | |
| from sklearn.impute import IterativeImputer, SimpleImputer | |
| import warnings | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| DEFAULT_SHEET_URL = "https://docs.google.com/spreadsheets/d/1ygw8nrqI-FdHzyQGczKR5n3t01d-9sxMB_KVoClhoAg/edit?gid=0#gid=0" | |
| # Columnas con formato monetario | |
| PRICE_COLS = ["Input price per 1MT", "Output price per 1MT"] | |
| # ---------- Carga de Google Sheet ---------- | |
| def sheet_to_dataframe(sheet_url: str) -> pd.DataFrame: | |
| m = re.search(r'/d/([a-zA-Z0-9-_]+)', sheet_url) | |
| gid = re.search(r'gid=([0-9]+)', sheet_url) | |
| if not m or not gid: | |
| raise ValueError("Invalid Google Sheets URL") | |
| sheet_id, gid = m.group(1), gid.group(1) | |
| csv_url = f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv&gid={gid}" | |
| return pd.read_csv(csv_url) | |
| # ---------- Limpieza / parsing ---------- | |
| def _parse_percent_value(v): | |
| if v is None or (isinstance(v, float) and np.isnan(v)): | |
| return np.nan | |
| if isinstance(v, (int, float)): | |
| return float(v) | |
| s = str(v).strip() | |
| if not s or s.lower() in {"na", "n/a", "null", "none"}: | |
| return np.nan | |
| s = s.replace("%", "").replace(",", "").strip() | |
| if s in {"-", "–", "—"}: | |
| return np.nan | |
| try: | |
| return float(s) | |
| except Exception: | |
| return np.nan | |
| def _split_columns(df: pd.DataFrame): | |
| cols = list(df.columns) | |
| if len(cols) < 4: | |
| raise ValueError("Sheet must have at least 4 columns") | |
| fixed = cols[:4] | |
| benches = cols[4:] | |
| return fixed, benches | |
| def _clean_benchmarks(df: pd.DataFrame): | |
| fixed, benches = _split_columns(df) | |
| num = df.copy() | |
| for c in benches: | |
| num[c] = num[c].apply(_parse_percent_value) | |
| return num, benches, fixed | |
| # ---------- Estilos ---------- | |
| def _style_table(df_display: pd.DataFrame, benches, | |
| cmap="RdYlGn", vmin=0.0, vmax=100.0, | |
| precision=1, imputed_mask: pd.DataFrame | None = None) -> str: | |
| styler = df_display.style.hide(axis="index") | |
| styler = ( | |
| styler | |
| .format({c: f"{{:.{precision}f}}%" for c in benches}, na_rep="N/A") | |
| .background_gradient(axis=None, subset=benches, cmap=cmap, vmin=vmin, vmax=vmax) | |
| .set_table_styles([ | |
| {"selector": "th", "props": [("position", "sticky"), ("top", "0"), ("background", "#111"), ("color", "white"), ("z-index", "1")]}, | |
| {"selector": "table", "props": [("border-collapse", "collapse"), ("font-family", "Inter, Roboto, Arial, sans-serif")]}, | |
| {"selector": "td, th", "props": [("border", "1px solid #333"), ("padding", "6px 8px")]}, | |
| {"selector": "tbody tr:nth-child(odd)", "props": [("background-color", "#161616")]}, | |
| {"selector": "tbody tr:nth-child(even)", "props": [("background-color", "#0f0f0f")]} | |
| ]) | |
| .set_properties(subset=df_display.columns[:4], **{"font-weight": "600"}) | |
| ) | |
| if imputed_mask is not None: | |
| # imputed_mask debe tener mismas filas/columnas que df_display[benches] | |
| def highlight(df): | |
| styles = pd.DataFrame("", index=df.index, columns=df.columns) | |
| for col in benches: | |
| styles.loc[imputed_mask[col], col] = "border: 2px dashed yellow;" | |
| return styles | |
| styler = styler.apply(highlight, axis=None) | |
| return styler.to_html() | |
| # ---------- Filtros y orden ---------- | |
| def _filter_rows(df_raw: pd.DataFrame, df_num: pd.DataFrame, benches, | |
| text_query, bench_choice, comparator, threshold): | |
| """Devuelve dataframes filtrados, conservando índices originales (sin reset).""" | |
| mask = pd.Series(True, index=df_raw.index) | |
| if text_query: | |
| tq = str(text_query).strip().lower() | |
| mc = (df_raw.iloc[:, 0].astype(str).str.lower().fillna("") + " " + | |
| df_raw.iloc[:, 1].astype(str).str.lower().fillna("")) | |
| mask &= mc.str.contains(tq, na=False) | |
| if bench_choice == "Any": | |
| bench_vals = df_num[benches] | |
| if comparator == "≥": | |
| mask &= bench_vals.ge(threshold).any(axis=1).fillna(False) | |
| else: | |
| mask &= bench_vals.le(threshold).any(axis=1).fillna(False) | |
| elif bench_choice and bench_choice in benches: | |
| col_vals = df_num[bench_choice] | |
| mask &= (col_vals.ge(threshold) if comparator == "≥" else col_vals.le(threshold)).fillna(False) | |
| return df_raw.loc[mask], df_num.loc[mask] | |
| def _numeric_key_for_price(series: pd.Series) -> pd.Series: | |
| """Convierte strings con $ y comas a float para ordenar correctamente.""" | |
| key = series.astype(str).str.replace(r"[^\d\.\-]", "", regex=True) | |
| return pd.to_numeric(key, errors="coerce") | |
| def _sort_df(df_full: pd.DataFrame, sort_col: str, ascending: bool) -> pd.DataFrame: | |
| """Ordena por columna; para PRICE_COLS aplica orden numérico.""" | |
| if not sort_col: | |
| return df_full | |
| if sort_col in PRICE_COLS: | |
| key = _numeric_key_for_price(df_full[sort_col]) | |
| return ( | |
| df_full.assign(_key=key) | |
| .sort_values("_key", ascending=ascending, na_position="last") | |
| .drop(columns="_key") | |
| ) | |
| return df_full.sort_values(sort_col, ascending=ascending, na_position="last") | |
| def _sort_with_mask(df_full: pd.DataFrame, mask: pd.DataFrame, sort_col: str, ascending: bool): | |
| """Ordena df y reordena la máscara imputed en la misma forma.""" | |
| if not sort_col: | |
| return df_full, mask | |
| if sort_col in PRICE_COLS: | |
| key = _numeric_key_for_price(df_full[sort_col]) | |
| else: | |
| key = df_full[sort_col] | |
| order = pd.Series(key).sort_values(ascending=ascending, na_position="last").index | |
| return df_full.loc[order], mask.loc[order] | |
| # ---------- Correlación ---------- | |
| def _build_correlation_plot(df_num: pd.DataFrame, benches): | |
| if not benches: | |
| fig = go.Figure(); fig.update_layout(title="No benchmark columns found") | |
| return fig | |
| mat = df_num[benches].astype(float) | |
| corr = mat.corr() if mat.shape[1] > 1 else pd.DataFrame([[1.0]], index=benches, columns=benches) | |
| fig = go.Figure(data=go.Heatmap( | |
| z=corr.values, x=list(corr.columns), y=list(corr.index), | |
| colorscale="RdYlGn", zmin=-1, zmax=1, colorbar=dict(title="ρ"), hoverongaps=False | |
| )) | |
| fig.update_layout(title="Correlation between benchmark variables", | |
| xaxis_nticks=min(20, len(benches)), | |
| yaxis_nticks=min(20, len(benches)), | |
| margin=dict(l=60, r=20, t=60, b=60), height=600) | |
| return fig | |
| # ---------- Ciclos de carga y UI ---------- | |
| def fetch_and_prepare(url): | |
| df_raw = sheet_to_dataframe(url) | |
| df_num, benches, fixed = _clean_benchmarks(df_raw) | |
| return df_raw, df_num, benches, fixed | |
| def refetch_all( | |
| t1_q, t1_bench, t1_op, t1_thr, t1_sort_col, t1_sort_dir, | |
| t3_q, t3_bench, t3_op, t3_thr, t3_sort_col, t3_sort_dir | |
| ): | |
| df_raw, df_num, benches, fixed = fetch_and_prepare(DEFAULT_SHEET_URL) | |
| # Correlación | |
| fig_corr = _build_correlation_plot(df_num, benches) | |
| # ----- TAB 1: ORIGINAL ----- | |
| df1_raw, df1_num = _filter_rows(df_raw, df_num, benches, t1_q, t1_bench, t1_op, t1_thr) | |
| df1_full = pd.concat([df1_raw.iloc[:, :4], df1_num[benches]], axis=1) | |
| df1_full = _sort_df(df1_full, t1_sort_col, ascending=(t1_sort_dir == "asc")) | |
| df1_full = df1_full.reset_index(drop=True) | |
| html_tab1 = _style_table(df1_full, benches) | |
| # ----- TAB 3: IMPUTED ----- | |
| bench_only = df_num[benches].astype(float) | |
| orig_nan = bench_only.isna() | |
| if bench_only.shape[1] > 1: | |
| imputer = IterativeImputer(random_state=0, sample_posterior=False, max_iter=15, initial_strategy="mean") | |
| bench_imp = pd.DataFrame(imputer.fit_transform(bench_only), columns=benches, index=bench_only.index) | |
| else: | |
| bench_imp = pd.DataFrame(SimpleImputer(strategy="mean").fit_transform(bench_only), | |
| columns=benches, index=bench_only.index) | |
| bench_imp = bench_imp.clip(lower=0.0) | |
| df3_raw, df3_num = _filter_rows(df_raw, bench_imp, benches, t3_q, t3_bench, t3_op, t3_thr) | |
| df3_full = pd.concat([df3_raw.iloc[:, :4], df3_num[benches]], axis=1) | |
| mask3 = orig_nan.loc[df3_num.index] # Máscara alineada a las filas filtradas | |
| df3_full, mask3 = _sort_with_mask(df3_full, mask3, t3_sort_col, ascending=(t3_sort_dir == "asc")) | |
| df3_full = df3_full.reset_index(drop=True) | |
| mask3 = mask3.reset_index(drop=True) | |
| html_tab3 = _style_table(df3_full, benches, imputed_mask=mask3) | |
| # Opciones de dropdown | |
| bench_options = ["Any"] + benches | |
| sort_options = fixed + benches | |
| return ( | |
| html_tab1, | |
| fig_corr, | |
| html_tab3, | |
| gr.update(choices=bench_options, value=t1_bench if t1_bench in bench_options else "Any"), | |
| gr.update(choices=sort_options, value=(t1_sort_col if t1_sort_col in sort_options else "Input price per 1MT")), | |
| gr.update(choices=bench_options, value=t3_bench if t3_bench in bench_options else "Any"), | |
| gr.update(choices=sort_options, value=(t3_sort_col if t3_sort_col in sort_options else "Input price per 1MT")), | |
| df_raw, df_num, benches, bench_imp, orig_nan | |
| ) | |
| def filter_tab1( | |
| s_df_raw, s_df_num, s_benches, | |
| t1_q, t1_bench, t1_op, t1_thr, | |
| t1_sort_col, t1_sort_dir | |
| ): | |
| df1_raw, df1_num = _filter_rows(s_df_raw, s_df_num, s_benches, t1_q, t1_bench, t1_op, t1_thr) | |
| df1_full = pd.concat([df1_raw.iloc[:, :4], df1_num[s_benches]], axis=1) | |
| df1_full = _sort_df(df1_full, t1_sort_col, ascending=(t1_sort_dir == "asc")).reset_index(drop=True) | |
| return _style_table(df1_full, s_benches) | |
| def filter_tab3( | |
| s_df_raw, s_bench_imp, s_benches, s_imput_mask, | |
| t3_q, t3_bench, t3_op, t3_thr, | |
| t3_sort_col, t3_sort_dir | |
| ): | |
| df3_raw, df3_num = _filter_rows(s_df_raw, s_bench_imp, s_benches, t3_q, t3_bench, t3_op, t3_thr) | |
| df3_full = pd.concat([df3_raw.iloc[:, :4], df3_num[s_benches]], axis=1) | |
| mask3 = s_imput_mask.loc[df3_num.index] | |
| df3_full, mask3 = _sort_with_mask(df3_full, mask3, t3_sort_col, ascending=(t3_sort_dir == "asc")) | |
| df3_full = df3_full.reset_index(drop=True) | |
| mask3 = mask3.reset_index(drop=True) | |
| return _style_table(df3_full, s_benches, imputed_mask=mask3) | |
| # ---------- UI ---------- | |
| with gr.Blocks(css=""" | |
| /* Scroll horizontal */ | |
| .table-wrap { overflow-x: auto; } | |
| /* Oculta la columna de índice */ | |
| .table-wrap table th.row_heading, | |
| .table-wrap table td.row_heading, | |
| .table-wrap table th.blank { | |
| display: none !important; | |
| } | |
| """) as demo: | |
| gr.Markdown("## Reasoning Models Benchmarks") | |
| with gr.Row(): | |
| reload_btn = gr.Button("Reload", variant="primary") | |
| # States | |
| s_df_raw = gr.State() | |
| s_df_num = gr.State() | |
| s_benches = gr.State() | |
| s_bench_imp = gr.State() | |
| s_imput_mask = gr.State() | |
| with gr.Tabs(): | |
| # Tab 1: Original | |
| with gr.Tab("Original table"): | |
| with gr.Row(): | |
| t1_q = gr.Textbox(label="Filter: Model/Company contains", placeholder="e.g., llama", scale=2) | |
| t1_bench = gr.Dropdown(choices=["Any"], value="Any", label="Benchmark") | |
| t1_op = gr.Radio(choices=["≥", "≤"], value="≥", label="Comparator") | |
| t1_thr = gr.Slider(minimum=0, maximum=100, value=0, step=1, label="Threshold (%)") | |
| # Inicializa choices y value neutros; se actualizan en refetch_all | |
| t1_sort_col = gr.Dropdown(choices=["Model","Company","Input price per 1MT","Output price per 1MT"], | |
| value=None, label="Sort by") | |
| t1_sort_dir = gr.Radio(choices=["asc", "desc"], value="asc", label="Direction") | |
| t1_html = gr.HTML(elem_classes=["table-wrap"]) | |
| # Tab 2: Correlation | |
| with gr.Tab("Correlation matrix"): | |
| corr_plot = gr.Plot() | |
| # Tab 3: Imputed | |
| with gr.Tab("Imputed table"): | |
| with gr.Row(): | |
| t3_q = gr.Textbox(label="Filter: Model/Company contains", placeholder="e.g., llama", scale=2) | |
| t3_bench = gr.Dropdown(choices=["Any"], value="Any", label="Benchmark") | |
| t3_op = gr.Radio(choices=["≥", "≤"], value="≥", label="Comparator") | |
| t3_thr = gr.Slider(minimum=0, maximum=100, value=0, step=1, label="Threshold (%)") | |
| t3_sort_col = gr.Dropdown(choices=["Model","Company","Input price per 1MT","Output price per 1MT"], | |
| value=None, label="Sort by") | |
| t3_sort_dir = gr.Radio(choices=["asc", "desc"], value="asc", label="Direction") | |
| t3_html = gr.HTML(elem_classes=["table-wrap"]) | |
| # Load / Reload | |
| args_reload = [ | |
| t1_q, t1_bench, t1_op, t1_thr, t1_sort_col, t1_sort_dir, | |
| t3_q, t3_bench, t3_op, t3_thr, t3_sort_col, t3_sort_dir | |
| ] | |
| outs_reload = [ | |
| t1_html, corr_plot, t3_html, | |
| t1_bench, t1_sort_col, | |
| t3_bench, t3_sort_col, | |
| s_df_raw, s_df_num, s_benches, s_bench_imp, s_imput_mask | |
| ] | |
| demo.load(refetch_all, inputs=args_reload, outputs=outs_reload) | |
| reload_btn.click(refetch_all, inputs=args_reload, outputs=outs_reload) | |
| # Eventos en vivo TAB 1 | |
| for comp in [t1_q, t1_bench, t1_op, t1_thr, t1_sort_col, t1_sort_dir]: | |
| comp.change( | |
| filter_tab1, | |
| inputs=[s_df_raw, s_df_num, s_benches, | |
| t1_q, t1_bench, t1_op, t1_thr, | |
| t1_sort_col, t1_sort_dir], | |
| outputs=[t1_html] | |
| ) | |
| # Eventos en vivo TAB 3 | |
| for comp in [t3_q, t3_bench, t3_op, t3_thr, t3_sort_col, t3_sort_dir]: | |
| comp.change( | |
| filter_tab3, | |
| inputs=[s_df_raw, s_bench_imp, s_benches, s_imput_mask, | |
| t3_q, t3_bench, t3_op, t3_thr, | |
| t3_sort_col, t3_sort_dir], | |
| outputs=[t3_html] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |