Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import spaces
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from TTS.api import TTS
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
import json
|
| 7 |
import scipy.io.wavfile as wavfile
|
|
@@ -13,31 +15,30 @@ device = "cuda"
|
|
| 13 |
|
| 14 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
@spaces.GPU(enable_queue=True)
|
| 17 |
def clone(text, audio):
|
| 18 |
# Generowanie mowy
|
| 19 |
-
|
| 20 |
|
| 21 |
# Konwersja do numpy array i zapisanie jako plik WAV
|
| 22 |
-
wav_np = np.array(
|
| 23 |
wavfile.write("./output.wav", 24000, (wav_np * 32767).astype(np.int16))
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Przygotowanie informacji o fonemach
|
| 26 |
phonemes_data = []
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
phonemes_data.append({
|
| 33 |
-
"phoneme": phoneme,
|
| 34 |
-
"start": float(start_time),
|
| 35 |
-
"end": float(end_time),
|
| 36 |
-
"duration": float(duration)
|
| 37 |
-
})
|
| 38 |
-
cumulative_duration = end_time
|
| 39 |
-
else:
|
| 40 |
-
phonemes_data.append({"error": "Brak informacji o fonemach"})
|
| 41 |
|
| 42 |
# Zapisywanie informacji o fonemach do pliku JSON
|
| 43 |
with open("./phonemes_info.json", "w", encoding="utf-8") as f:
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from TTS.api import TTS
|
| 5 |
+
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
| 6 |
+
from TTS.tts.utils.text.phonemizer import Phonemizer
|
| 7 |
import os
|
| 8 |
import json
|
| 9 |
import scipy.io.wavfile as wavfile
|
|
|
|
| 15 |
|
| 16 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
|
| 17 |
|
| 18 |
+
# Inicjalizacja tokenizera i fonemizera
|
| 19 |
+
tokenizer = TTSTokenizer(use_phonemes=False)
|
| 20 |
+
phonemizer = Phonemizer()
|
| 21 |
+
|
| 22 |
@spaces.GPU(enable_queue=True)
|
| 23 |
def clone(text, audio):
|
| 24 |
# Generowanie mowy
|
| 25 |
+
wav = tts.tts(text=text, speaker_wav=audio, language="pl")
|
| 26 |
|
| 27 |
# Konwersja do numpy array i zapisanie jako plik WAV
|
| 28 |
+
wav_np = np.array(wav)
|
| 29 |
wavfile.write("./output.wav", 24000, (wav_np * 32767).astype(np.int16))
|
| 30 |
|
| 31 |
+
# Przetwarzanie tekstu na fonemy
|
| 32 |
+
tokens = tokenizer.text_to_ids(text)
|
| 33 |
+
phonemes = phonemizer.phonemize(tokens, language="pl")
|
| 34 |
+
|
| 35 |
# Przygotowanie informacji o fonemach
|
| 36 |
phonemes_data = []
|
| 37 |
+
for i, phoneme in enumerate(phonemes):
|
| 38 |
+
phonemes_data.append({
|
| 39 |
+
"phoneme": phoneme,
|
| 40 |
+
"index": i
|
| 41 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Zapisywanie informacji o fonemach do pliku JSON
|
| 44 |
with open("./phonemes_info.json", "w", encoding="utf-8") as f:
|