Update app.py
Browse files
app.py
CHANGED
@@ -1,208 +1,15 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import logging
|
4 |
import streamlit as st
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
-
from typing import List, Dict, Tuple
|
10 |
-
|
11 |
-
# Konfiguracja logowania
|
12 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
-
|
14 |
-
# Ładowanie zmiennych środowiskowych
|
15 |
-
load_dotenv()
|
16 |
-
|
17 |
-
# Konfiguracja API
|
18 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
19 |
-
MODEL_NAME = "Qwen/Qwen2.5-72B-Instruct"
|
20 |
-
|
21 |
-
# Konfiguracja bazy danych
|
22 |
-
DATABASE_DIR = "chroma_db"
|
23 |
-
|
24 |
-
# Konfiguracja modelu embeddings
|
25 |
-
EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
26 |
-
|
27 |
-
# System prompt
|
28 |
-
SYSTEM_PROMPT = """Jesteś asystentem prawniczym specjalizującym się w polskim prawie.
|
29 |
-
Twoje odpowiedzi opierają się na aktualnych przepisach prawnych.
|
30 |
-
Zawsze cytuj konkretne artykuły i paragrafy z odpowiednich ustaw."""
|
31 |
-
|
32 |
-
class KodeksProcessor:
|
33 |
-
def __init__(self):
|
34 |
-
logging.info("Inicjalizacja klienta bazy danych...")
|
35 |
-
self.client = chromadb.PersistentClient(path=DATABASE_DIR)
|
36 |
-
try:
|
37 |
-
self.collection = self.client.get_collection("kodeksy")
|
38 |
-
logging.info("Pobrano istniejącą kolekcję 'kodeksy'.")
|
39 |
-
except:
|
40 |
-
self.collection = self.client.create_collection(
|
41 |
-
name="kodeksy",
|
42 |
-
embedding_function=embedding_functions.SentenceTransformerEmbeddingFunction(
|
43 |
-
model_name=EMBEDDING_MODEL
|
44 |
-
)
|
45 |
-
)
|
46 |
-
logging.info("Utworzono nową kolekcję 'kodeksy'.")
|
47 |
-
|
48 |
-
def extract_metadata(self, text: str) -> Dict:
|
49 |
-
metadata = {}
|
50 |
-
dz_u_match = re.search(r'Dz\.U\.(\d{4})\.(\d+)\.(\d+)', text)
|
51 |
-
if dz_u_match:
|
52 |
-
metadata['dz_u'] = f"Dz.U.{dz_u_match.group(1)}.{dz_u_match.group(2)}.{dz_u_match.group(3)}"
|
53 |
-
metadata['rok'] = dz_u_match.group(1)
|
54 |
-
|
55 |
-
nazwa_match = re.search(r'USTAWA\s+z dnia(.*?)\n(.*?)\n', text)
|
56 |
-
if nazwa_match:
|
57 |
-
metadata['data_ustawy'] = nazwa_match.group(1).strip()
|
58 |
-
metadata['nazwa'] = nazwa_match.group(2).strip()
|
59 |
-
|
60 |
-
logging.info("Wydobyto metadane: %s", metadata)
|
61 |
-
return metadata
|
62 |
-
|
63 |
-
def split_header_and_content(self, text: str) -> Tuple[str, str]:
|
64 |
-
parts = text.split("USTAWA", 1)
|
65 |
-
if len(parts) > 1:
|
66 |
-
return parts[0], "USTAWA" + parts[1]
|
67 |
-
return "", text
|
68 |
-
|
69 |
-
def process_article(self, article_text: str) -> Dict:
|
70 |
-
art_num_match = re.match(r'Art\.\s*(\d+)', article_text)
|
71 |
-
article_num = art_num_match.group(1) if art_num_match else ""
|
72 |
-
|
73 |
-
paragraphs = re.findall(r'§\s*(\d+)\.\s*(.*?)(?=§\s*\d+|Art\.\s*\d+|$)', article_text, re.DOTALL)
|
74 |
-
|
75 |
-
if not paragraphs:
|
76 |
-
return {
|
77 |
-
"article_num": article_num,
|
78 |
-
"content": article_text.strip(),
|
79 |
-
"has_paragraphs": False
|
80 |
-
}
|
81 |
-
|
82 |
-
return {
|
83 |
-
"article_num": article_num,
|
84 |
-
"paragraphs": paragraphs,
|
85 |
-
"has_paragraphs": True
|
86 |
-
}
|
87 |
-
|
88 |
-
def split_into_chunks(self, text: str, metadata: Dict) -> List[Dict]:
|
89 |
-
chunks = []
|
90 |
-
articles = re.split(r'(Art\.\s*\d+)', text) # Podział na artykuły
|
91 |
-
|
92 |
-
for i in range(1, len(articles), 2): # Przechodzimy przez artykuły
|
93 |
-
article_title = articles[i].strip()
|
94 |
-
article_content = articles[i + 1].strip() if i + 1 < len(articles) else ""
|
95 |
-
|
96 |
-
processed_article = self.process_article(article_title + " " + article_content)
|
97 |
-
|
98 |
-
chunk_metadata = {
|
99 |
-
**metadata,
|
100 |
-
"article": processed_article["article_num"]
|
101 |
-
}
|
102 |
-
|
103 |
-
if processed_article["has_paragraphs"]:
|
104 |
-
for par_num, par_content in processed_article["paragraphs"]:
|
105 |
-
chunks.append({
|
106 |
-
"text": f"{article_title} §{par_num}. {par_content.strip()}",
|
107 |
-
"metadata": {**chunk_metadata, "paragraph": par_num}
|
108 |
-
})
|
109 |
-
else:
|
110 |
-
chunks.append({
|
111 |
-
"text": processed_article["content"],
|
112 |
-
"metadata": chunk_metadata
|
113 |
-
})
|
114 |
-
|
115 |
-
logging.info("Podzielono tekst na %d chunków.", len(chunks))
|
116 |
-
return chunks
|
117 |
-
|
118 |
-
def process_file(self, filepath: str) -> None:
|
119 |
-
logging.info("Przetwarzanie pliku: %s", filepath)
|
120 |
-
|
121 |
-
with open(filepath, 'r', encoding='utf-8') as file:
|
122 |
-
content = file.read()
|
123 |
-
|
124 |
-
header, main_content = self.split_header_and_content(content)
|
125 |
-
metadata = self.extract_metadata(main_content)
|
126 |
-
metadata['filename'] = os.path.basename(filepath)
|
127 |
-
|
128 |
-
chunks = self.split_into_chunks(main_content, metadata)
|
129 |
-
|
130 |
-
if chunks: # Sprawdzenie, czy są jakieś chunk'i do dodania
|
131 |
-
for i, chunk in enumerate(chunks):
|
132 |
-
self.collection.add(
|
133 |
-
documents=[chunk["text"]],
|
134 |
-
metadatas=[chunk["metadata"]],
|
135 |
-
ids=[f"{metadata['filename']}_{chunk['metadata']['article']}_{i}"]
|
136 |
-
)
|
137 |
-
logging.info("Dodano chunk: %s", chunk["text"]) # Logowanie dodawanych chunków
|
138 |
-
else:
|
139 |
-
logging.warning("Brak chunków do dodania z pliku: %s", filepath) # Logowanie braku chunków
|
140 |
-
|
141 |
-
logging.info("Dodano %d chunków z pliku %s", len(chunks), metadata['filename'])
|
142 |
-
|
143 |
-
def process_all_files(self, directory: str) -> None:
|
144 |
-
logging.info("Rozpoczęcie przetwarzania wszystkich plików w katalogu: %s", directory)
|
145 |
-
for filename in os.listdir(directory):
|
146 |
-
if filename.endswith('.txt'):
|
147 |
-
filepath = os.path.join(directory, filename)
|
148 |
-
logging.info("Przetwarzanie pliku: %s", filepath) # Logowanie przetwarzania pliku
|
149 |
-
self.process_file(filepath)
|
150 |
-
logging.info("Zakończono przetwarzanie plików.")
|
151 |
-
|
152 |
-
def search(self, query: str, n_results: int = 3) -> Dict:
|
153 |
-
logging.info("Wyszukiwanie w bazie danych dla zapytania: %s", query)
|
154 |
-
results = self.collection.query(
|
155 |
-
query_texts=[query],
|
156 |
-
n_results=n_results
|
157 |
-
)
|
158 |
-
logging.info("Znaleziono %d wyników dla zapytania: %s", len(results['documents'][0]), query)
|
159 |
-
return results
|
160 |
-
|
161 |
-
class Chatbot:
|
162 |
-
def __init__(self):
|
163 |
-
self.client = InferenceClient(api_key=HF_TOKEN)
|
164 |
-
self.conversation_history = [
|
165 |
-
{"role": "system", "content": SYSTEM_PROMPT}
|
166 |
-
]
|
167 |
-
|
168 |
-
def generate_context(self, relevant_chunks: List[Dict]) -> str:
|
169 |
-
context = "Kontekst z przepisów prawnych:\n\n"
|
170 |
-
for chunk in relevant_chunks:
|
171 |
-
context += f"{chunk['text']}\n\n"
|
172 |
-
return context
|
173 |
-
|
174 |
-
def get_response(self, user_input: str, context: str) -> str:
|
175 |
-
messages = self.conversation_history + [
|
176 |
-
{"role": "user", "content": f"Kontekst: {context}\n\nPytanie: {user_input}"}
|
177 |
-
]
|
178 |
-
|
179 |
-
response = ""
|
180 |
-
stream = self.client.chat.completions.create(
|
181 |
-
model=MODEL_NAME,
|
182 |
-
messages=messages,
|
183 |
-
temperature=0.5,
|
184 |
-
max_tokens=8192,
|
185 |
-
top_p=0.7,
|
186 |
-
stream=True
|
187 |
-
)
|
188 |
-
|
189 |
-
for chunk in stream:
|
190 |
-
content = chunk.choices[0].delta.content
|
191 |
-
if content:
|
192 |
-
response += content
|
193 |
-
yield content
|
194 |
-
|
195 |
-
self.conversation_history.append({"role": "user", "content": user_input})
|
196 |
-
self.conversation_history.append({"role": "assistant", "content": response})
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
{"role": "system", "content": SYSTEM_PROMPT}
|
201 |
-
]
|
202 |
|
203 |
def initialize_session_state():
|
204 |
if 'chatbot' not in st.session_state:
|
205 |
-
st.session_state.chatbot =
|
206 |
if 'messages' not in st.session_state:
|
207 |
st.session_state.messages = []
|
208 |
|
@@ -215,13 +22,15 @@ def main():
|
|
215 |
if 'db_initialized' not in st.session_state:
|
216 |
with st.spinner("Inicjalizacja bazy danych..."):
|
217 |
processor = KodeksProcessor()
|
218 |
-
if not os.path.exists(
|
|
|
219 |
processor.process_all_files("data/kodeksy")
|
220 |
-
|
|
|
|
|
221 |
|
222 |
# Przycisk do czyszczenia historii
|
223 |
if st.sidebar.button("Wyczyść historię"):
|
224 |
-
st.session_state.chatbot.clear_history()
|
225 |
st.session_state.messages = []
|
226 |
st.rerun()
|
227 |
|
@@ -245,20 +54,27 @@ def main():
|
|
245 |
# Wygeneruj odpowiedź
|
246 |
with st.chat_message("assistant"):
|
247 |
message_placeholder = st.empty()
|
248 |
-
full_response = ""
|
249 |
-
|
250 |
-
context = st.session_state.chatbot.generate_context(
|
251 |
-
[{"text": doc} for doc in relevant_chunks['documents'][0]]
|
252 |
-
)
|
253 |
|
254 |
-
for
|
255 |
-
full_response +=
|
256 |
-
message_placeholder.markdown(full_response + "▌")
|
257 |
|
258 |
message_placeholder.markdown(full_response)
|
259 |
|
260 |
# Dodaj odpowiedź asystenta do historii
|
261 |
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
if __name__ == "__main__":
|
264 |
main()
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import logging
|
3 |
+
from database import KodeksProcessor
|
4 |
+
from config import DATABASE_DIR
|
5 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
8 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
9 |
|
10 |
def initialize_session_state():
|
11 |
if 'chatbot' not in st.session_state:
|
12 |
+
st.session_state.chatbot = None
|
13 |
if 'messages' not in st.session_state:
|
14 |
st.session_state.messages = []
|
15 |
|
|
|
22 |
if 'db_initialized' not in st.session_state:
|
23 |
with st.spinner("Inicjalizacja bazy danych..."):
|
24 |
processor = KodeksProcessor()
|
25 |
+
if not os.path.exists(DATABASE_DIR):
|
26 |
+
logger.info(f"Przetwarzanie plików w katalogu: data/kodeksy")
|
27 |
processor.process_all_files("data/kodeksy")
|
28 |
+
else:
|
29 |
+
logger.info(f"Baza danych już istnieje w {DATABASE_DIR}")
|
30 |
+
st.session_state.db_initialized = True
|
31 |
|
32 |
# Przycisk do czyszczenia historii
|
33 |
if st.sidebar.button("Wyczyść historię"):
|
|
|
34 |
st.session_state.messages = []
|
35 |
st.rerun()
|
36 |
|
|
|
54 |
# Wygeneruj odpowiedź
|
55 |
with st.chat_message("assistant"):
|
56 |
message_placeholder = st.empty()
|
57 |
+
full_response = "Oto co znalazłem w bazie danych:\n\n"
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
for doc, metadata in zip(relevant_chunks['documents'][0], relevant_chunks['metadatas'][0]):
|
60 |
+
full_response += f"**Artykuł {metadata['article']}**\n{doc}\n\n"
|
|
|
61 |
|
62 |
message_placeholder.markdown(full_response)
|
63 |
|
64 |
# Dodaj odpowiedź asystenta do historii
|
65 |
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
66 |
|
67 |
+
# Sekcja debugowania
|
68 |
+
if st.sidebar.checkbox("Pokaż informacje debugowania"):
|
69 |
+
st.subheader("Informacje debugowania")
|
70 |
+
processor = KodeksProcessor()
|
71 |
+
doc_count = processor.collection.count()
|
72 |
+
st.write(f"Całkowita liczba dokumentów w bazie danych: {doc_count}")
|
73 |
+
if st.button("Przetwórz pliki ponownie"):
|
74 |
+
processor.process_all_files("data/kodeksy")
|
75 |
+
st.success("Przetwarzanie zakończone")
|
76 |
+
if st.button("Pokaż wszystkie dokumenty"):
|
77 |
+
processor.list_all_documents()
|
78 |
+
|
79 |
if __name__ == "__main__":
|
80 |
main()
|