|
import { searchWeb } from "$lib/server/websearch/searchWeb"; |
|
import type { Message } from "$lib/types/Message"; |
|
import type { WebSearch, WebSearchSource } from "$lib/types/WebSearch"; |
|
import { generateQuery } from "$lib/server/websearch/generateQuery"; |
|
import { parseWeb } from "$lib/server/websearch/parseWeb"; |
|
import { chunk } from "$lib/utils/chunk"; |
|
import { |
|
MAX_SEQ_LEN as CHUNK_CAR_LEN, |
|
findSimilarSentences, |
|
} from "$lib/server/websearch/sentenceSimilarity"; |
|
import type { Conversation } from "$lib/types/Conversation"; |
|
import type { MessageUpdate } from "$lib/types/MessageUpdate"; |
|
|
|
const MAX_N_PAGES_SCRAPE = 10 as const; |
|
const MAX_N_PAGES_EMBED = 5 as const; |
|
|
|
export async function runWebSearch( |
|
conv: Conversation, |
|
prompt: string, |
|
updatePad: (upd: MessageUpdate) => void |
|
) { |
|
const messages = (() => { |
|
return [...conv.messages, { content: prompt, from: "user", id: crypto.randomUUID() }]; |
|
})() satisfies Message[]; |
|
|
|
const webSearch: WebSearch = { |
|
prompt: prompt, |
|
searchQuery: "", |
|
results: [], |
|
context: "", |
|
contextSources: [], |
|
createdAt: new Date(), |
|
updatedAt: new Date(), |
|
}; |
|
|
|
function appendUpdate(message: string, args?: string[], type?: "error" | "update") { |
|
updatePad({ type: "webSearch", messageType: type ?? "update", message: message, args: args }); |
|
} |
|
|
|
try { |
|
webSearch.searchQuery = await generateQuery(messages); |
|
appendUpdate("Searching Google", [webSearch.searchQuery]); |
|
const results = await searchWeb(webSearch.searchQuery); |
|
webSearch.results = |
|
(results.organic_results && |
|
results.organic_results.map((el: { title: string; link: string }) => { |
|
const { title, link } = el; |
|
const { hostname } = new URL(link); |
|
return { title, link, hostname }; |
|
})) ?? |
|
[]; |
|
webSearch.results = webSearch.results |
|
.filter(({ link }) => !link.includes("youtube.com")) |
|
.slice(0, MAX_N_PAGES_SCRAPE); |
|
|
|
let paragraphChunks: { source: WebSearchSource; text: string }[] = []; |
|
if (webSearch.results.length > 0) { |
|
appendUpdate("Browsing results"); |
|
const promises = webSearch.results.map(async (result) => { |
|
const { link } = result; |
|
let text = ""; |
|
try { |
|
text = await parseWeb(link); |
|
appendUpdate("Browsing webpage", [link]); |
|
} catch (e) { |
|
|
|
} |
|
const MAX_N_CHUNKS = 100; |
|
const texts = chunk(text, CHUNK_CAR_LEN).slice(0, MAX_N_CHUNKS); |
|
return texts.map((t) => ({ source: result, text: t })); |
|
}); |
|
const nestedParagraphChunks = (await Promise.all(promises)).slice(0, MAX_N_PAGES_EMBED); |
|
paragraphChunks = nestedParagraphChunks.flat(); |
|
if (!paragraphChunks.length) { |
|
throw new Error("No text found on the first 5 results"); |
|
} |
|
} else { |
|
throw new Error("No results found for this search query"); |
|
} |
|
|
|
appendUpdate("Extracting relevant information"); |
|
const topKClosestParagraphs = 8; |
|
const texts = paragraphChunks.map(({ text }) => text); |
|
const indices = await findSimilarSentences(prompt, texts, { |
|
topK: topKClosestParagraphs, |
|
}); |
|
webSearch.context = indices.map((idx) => texts[idx]).join(""); |
|
|
|
const usedSources = new Set<string>(); |
|
for (const idx of indices) { |
|
const { source } = paragraphChunks[idx]; |
|
if (!usedSources.has(source.link)) { |
|
usedSources.add(source.link); |
|
webSearch.contextSources.push(source); |
|
updatePad({ |
|
type: "webSearch", |
|
messageType: "sources", |
|
message: "sources", |
|
sources: webSearch.contextSources, |
|
}); |
|
} |
|
} |
|
} catch (searchError) { |
|
if (searchError instanceof Error) { |
|
appendUpdate( |
|
"An error occurred with the web search", |
|
[JSON.stringify(searchError.message)], |
|
"error" |
|
); |
|
} |
|
} |
|
|
|
return webSearch; |
|
} |
|
|