Translation_app / app.py
adnaniqbal001's picture
Update app.py
054bba0 verified
import streamlit as st
import torch
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, MarianMTModel, MarianTokenizer, Wav2Vec2CTCTokenizer
import soundfile as sf
import tempfile
import numpy as np
# Load models and tokenizers
@st.cache_resource
def load_models():
try:
# Load Wav2Vec2 for ASR (Multilingual model for Urdu support)
# Load the tokenizer directly using Wav2Vec2CTCTokenizer
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-large-xlsr-53")
# Then, initialize the processor with the tokenizer
asr_processor = Wav2Vec2Processor(feature_extractor=asr_processor.feature_extractor, tokenizer=tokenizer)
asr_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53")
# Load MarianMT for translation (Urdu to German)
translation_tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ur-de")
translation_model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-ur-de")
return asr_processor, asr_model, translation_tokenizer, translation_model
except Exception as e:
st.error(f"Error loading models: {e}")
return None, None, None, None
# Initialize models
asr_processor, asr_model, translation_tokenizer, translation_model = load_models()
# ... (rest of your app.py code remains the same)
# Streamlit app interface
st.title("Real-Time Urdu to German Voice Translator")
st.markdown("Upload an Urdu audio file in `.wav` format, and the app will transcribe and translate it.")
# File uploader
uploaded_file = st.file_uploader("Upload your Urdu audio file (16kHz .wav)", type=["wav"])
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
try:
# Load and validate audio file
audio_input, sample_rate = sf.read(temp_file_path)
if sample_rate != 16000:
st.error("Audio file must have a sampling rate of 16kHz.")
else:
st.info("Processing the audio...")
# Step 1: Speech-to-Text (ASR)
input_values = asr_processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
with torch.no_grad():
logits = asr_model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = asr_processor.batch_decode(predicted_ids)[0]
st.text(f"Transcribed Urdu Text: {transcription}")
# Step 2: Translate Text (Urdu to German)
translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True))
german_translation = translation_tokenizer.decode(translated[0], skip_special_tokens=True)
st.success(f"Translated German Text: {german_translation}")
except Exception as e:
st.error(f"An error occurred: {e}")