Spaces:
Sleeping
Sleeping
| import PIL.Image as Image | |
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| from ultralytics import ASSETS, YOLO | |
| model = YOLO("best.pt") | |
| def preprocess_image(img): | |
| # Convert to grayscale | |
| img_gray = img.convert("L") | |
| img_resized = img_gray.resize((640,640)) | |
| # Apply CLAHE (Contrast Limited Adaptive Histogram Equalization) | |
| clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) | |
| img_clahe = clahe.apply(np.array(img_resized)) | |
| return Image.fromarray(img_clahe) | |
| def predict_image(img, conf_threshold, iou_threshold): | |
| # Preprocess the image | |
| img_preprocessed = preprocess_image(img) | |
| results = model.predict( | |
| source=img_preprocessed, | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| show_labels=True, | |
| show_conf=True, | |
| imgsz=640, | |
| ) | |
| for r in results: | |
| im_array = r.plot() | |
| im = Image.fromarray(im_array[..., ::-1]) | |
| return im | |
| iface = gr.Interface( | |
| fn=predict_image, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Slider(minimum=0, maximum=1, value=0.7, label="Confidence threshold"), | |
| gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") | |
| ], | |
| outputs=gr.Image(type="pil", label="Result")) | |
| if __name__ == '__main__': | |
| iface.launch() | |