Khushi Dahiya
commited on
Commit
·
330d8e8
1
Parent(s):
6bc3ca2
reverting batch processing
Browse files- demos/melodyflow_app.py +33 -282
demos/melodyflow_app.py
CHANGED
|
@@ -20,11 +20,6 @@ from tempfile import NamedTemporaryFile
|
|
| 20 |
import time
|
| 21 |
import typing as tp
|
| 22 |
import warnings
|
| 23 |
-
import asyncio
|
| 24 |
-
import threading
|
| 25 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 26 |
-
from queue import Queue, Empty
|
| 27 |
-
import uuid
|
| 28 |
|
| 29 |
import torch
|
| 30 |
import gradio as gr
|
|
@@ -35,15 +30,9 @@ from audiocraft.models import MelodyFlow
|
|
| 35 |
|
| 36 |
|
| 37 |
MODEL = None # Last used model
|
| 38 |
-
MODEL_LOCK = threading.Lock() # Thread lock for model access
|
| 39 |
-
REQUEST_QUEUE = Queue() # Queue for batch processing
|
| 40 |
-
BATCH_PROCESSOR = None # Background batch processor
|
| 41 |
-
BATCH_SIZE = 4 # Maximum batch size for concurrent processing
|
| 42 |
-
BATCH_TIMEOUT = 2.0 # Maximum wait time to form a batch (seconds)
|
| 43 |
SPACE_ID = os.environ.get('SPACE_ID', '')
|
| 44 |
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/')
|
| 45 |
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID
|
| 46 |
-
MAX_BATCH_SIZE = 12
|
| 47 |
N_REPEATS = 1
|
| 48 |
INTERRUPTING = False
|
| 49 |
MBD = None
|
|
@@ -82,213 +71,6 @@ class FileCleaner:
|
|
| 82 |
file_cleaner = FileCleaner()
|
| 83 |
|
| 84 |
|
| 85 |
-
class RequestBatch:
|
| 86 |
-
"""Represents a batch of requests to process together"""
|
| 87 |
-
def __init__(self):
|
| 88 |
-
self.requests = []
|
| 89 |
-
self.futures = []
|
| 90 |
-
self.created_at = time.time()
|
| 91 |
-
|
| 92 |
-
def add_request(self, request_data, future):
|
| 93 |
-
self.requests.append(request_data)
|
| 94 |
-
self.futures.append(future)
|
| 95 |
-
|
| 96 |
-
def is_full(self):
|
| 97 |
-
return len(self.requests) >= BATCH_SIZE
|
| 98 |
-
|
| 99 |
-
def is_expired(self):
|
| 100 |
-
return time.time() - self.created_at > BATCH_TIMEOUT
|
| 101 |
-
|
| 102 |
-
def should_process(self):
|
| 103 |
-
return self.is_full() or self.is_expired() or len(self.requests) > 0
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
class BatchProcessor:
|
| 107 |
-
"""Handles batched processing of requests"""
|
| 108 |
-
def __init__(self):
|
| 109 |
-
self.current_batch = RequestBatch()
|
| 110 |
-
self.processing = False
|
| 111 |
-
self.stop_event = threading.Event()
|
| 112 |
-
|
| 113 |
-
def start(self):
|
| 114 |
-
"""Start the background batch processing thread"""
|
| 115 |
-
self.thread = threading.Thread(target=self._process_loop, daemon=True)
|
| 116 |
-
self.thread.start()
|
| 117 |
-
|
| 118 |
-
def stop(self):
|
| 119 |
-
"""Stop the background batch processing"""
|
| 120 |
-
self.stop_event.set()
|
| 121 |
-
|
| 122 |
-
def add_request(self, request_data):
|
| 123 |
-
"""Add a request to the batch and return a future for the result"""
|
| 124 |
-
from concurrent.futures import Future
|
| 125 |
-
future = Future()
|
| 126 |
-
|
| 127 |
-
# Add to current batch
|
| 128 |
-
self.current_batch.add_request(request_data, future)
|
| 129 |
-
|
| 130 |
-
# Signal that we have a new request
|
| 131 |
-
REQUEST_QUEUE.put("new_request")
|
| 132 |
-
|
| 133 |
-
return future
|
| 134 |
-
|
| 135 |
-
def _process_loop(self):
|
| 136 |
-
"""Main processing loop that runs in background thread"""
|
| 137 |
-
while not self.stop_event.is_set():
|
| 138 |
-
try:
|
| 139 |
-
# Wait for a signal or timeout
|
| 140 |
-
REQUEST_QUEUE.get(timeout=0.5)
|
| 141 |
-
|
| 142 |
-
# Check if we should process current batch
|
| 143 |
-
if self.current_batch.should_process() and not self.processing:
|
| 144 |
-
self._process_current_batch()
|
| 145 |
-
|
| 146 |
-
except Empty:
|
| 147 |
-
# Timeout - check if we have an expired batch
|
| 148 |
-
if self.current_batch.should_process() and not self.processing:
|
| 149 |
-
self._process_current_batch()
|
| 150 |
-
continue
|
| 151 |
-
except Exception as e:
|
| 152 |
-
print(f"Error in batch processing loop: {e}")
|
| 153 |
-
|
| 154 |
-
@spaces.GPU(duration=45) # Increased duration for batch processing
|
| 155 |
-
def _process_current_batch(self):
|
| 156 |
-
"""Process the current batch of requests"""
|
| 157 |
-
if len(self.current_batch.requests) == 0:
|
| 158 |
-
return
|
| 159 |
-
|
| 160 |
-
self.processing = True
|
| 161 |
-
batch = self.current_batch
|
| 162 |
-
self.current_batch = RequestBatch() # Start new batch
|
| 163 |
-
|
| 164 |
-
try:
|
| 165 |
-
# Extract batch data
|
| 166 |
-
texts = []
|
| 167 |
-
melodies = []
|
| 168 |
-
params_list = []
|
| 169 |
-
|
| 170 |
-
print(f"🔄 BATCH PROCESSOR: Processing {len(batch.requests)} requests")
|
| 171 |
-
|
| 172 |
-
for request_data in batch.requests:
|
| 173 |
-
texts.append(request_data['text'])
|
| 174 |
-
melodies.append(request_data['melody'])
|
| 175 |
-
params_list.append({
|
| 176 |
-
'solver': request_data['solver'],
|
| 177 |
-
'steps': request_data['steps'],
|
| 178 |
-
'target_flowstep': request_data['target_flowstep'],
|
| 179 |
-
'regularize': request_data['regularize'],
|
| 180 |
-
'regularization_strength': request_data['regularization_strength'],
|
| 181 |
-
'duration': request_data['duration'],
|
| 182 |
-
'model': request_data['model']
|
| 183 |
-
})
|
| 184 |
-
|
| 185 |
-
# Load model if needed (use the first request's model)
|
| 186 |
-
model_version = params_list[0]['model']
|
| 187 |
-
load_model(model_version)
|
| 188 |
-
|
| 189 |
-
# Process batch with unified parameters (use first request's params)
|
| 190 |
-
params = params_list[0]
|
| 191 |
-
results = _do_predictions_batch(
|
| 192 |
-
texts=texts,
|
| 193 |
-
melodies=melodies,
|
| 194 |
-
solver=params['solver'],
|
| 195 |
-
steps=params['steps'],
|
| 196 |
-
target_flowstep=params['target_flowstep'],
|
| 197 |
-
regularize=params['regularize'],
|
| 198 |
-
regularization_strength=params['regularization_strength'],
|
| 199 |
-
duration=params['duration'],
|
| 200 |
-
progress=False
|
| 201 |
-
)
|
| 202 |
-
|
| 203 |
-
# Set results for each future
|
| 204 |
-
for i, future in enumerate(batch.futures):
|
| 205 |
-
if i < len(results):
|
| 206 |
-
future.set_result(results[i])
|
| 207 |
-
else:
|
| 208 |
-
future.set_exception(Exception("Batch processing failed"))
|
| 209 |
-
|
| 210 |
-
except Exception as e:
|
| 211 |
-
# Set exception for all futures in batch
|
| 212 |
-
for future in batch.futures:
|
| 213 |
-
future.set_exception(e)
|
| 214 |
-
finally:
|
| 215 |
-
self.processing = False
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
def _do_predictions_batch(texts, melodies, solver, steps, target_flowstep,
|
| 219 |
-
regularize, regularization_strength, duration, progress=False):
|
| 220 |
-
"""Process a batch of predictions efficiently"""
|
| 221 |
-
with MODEL_LOCK:
|
| 222 |
-
MODEL.set_generation_params(solver=solver, steps=steps, duration=duration)
|
| 223 |
-
MODEL.set_editing_params(
|
| 224 |
-
solver=solver,
|
| 225 |
-
steps=steps,
|
| 226 |
-
target_flowstep=target_flowstep,
|
| 227 |
-
regularize=regularize,
|
| 228 |
-
lambda_kl=regularization_strength
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
print(f"Processing batch: {len(texts)} requests")
|
| 232 |
-
be = time.time()
|
| 233 |
-
|
| 234 |
-
processed_melodies = []
|
| 235 |
-
target_sr = 48000
|
| 236 |
-
target_ac = 2
|
| 237 |
-
|
| 238 |
-
for melody in melodies:
|
| 239 |
-
if melody is None:
|
| 240 |
-
processed_melodies.append(None)
|
| 241 |
-
else:
|
| 242 |
-
melody, sr = audio_read(melody)
|
| 243 |
-
if melody.dim() == 2:
|
| 244 |
-
melody = melody[None]
|
| 245 |
-
if melody.shape[-1] > int(sr * MODEL.duration):
|
| 246 |
-
melody = melody[..., :int(sr * MODEL.duration)]
|
| 247 |
-
melody = convert_audio(melody, sr, target_sr, target_ac)
|
| 248 |
-
melody = MODEL.encode_audio(melody.to(MODEL.device))
|
| 249 |
-
processed_melodies.append(melody)
|
| 250 |
-
|
| 251 |
-
try:
|
| 252 |
-
# Process all requests in the batch together
|
| 253 |
-
if any(m is not None for m in processed_melodies):
|
| 254 |
-
# For editing mode, process each request individually due to melody constraints
|
| 255 |
-
outputs_list = []
|
| 256 |
-
for i, (text, melody) in enumerate(zip(texts, processed_melodies)):
|
| 257 |
-
if melody is not None:
|
| 258 |
-
output = MODEL.edit(
|
| 259 |
-
prompt_tokens=melody.repeat(1, 1, 1),
|
| 260 |
-
descriptions=[text],
|
| 261 |
-
src_descriptions=[""],
|
| 262 |
-
progress=progress,
|
| 263 |
-
return_tokens=False,
|
| 264 |
-
)
|
| 265 |
-
else:
|
| 266 |
-
output = MODEL.generate([text], progress=progress, return_tokens=False)
|
| 267 |
-
outputs_list.append(output[0])
|
| 268 |
-
outputs = torch.stack(outputs_list)
|
| 269 |
-
else:
|
| 270 |
-
# For generation mode, we can batch all requests
|
| 271 |
-
outputs = MODEL.generate(texts, progress=progress, return_tokens=False)
|
| 272 |
-
|
| 273 |
-
except RuntimeError as e:
|
| 274 |
-
raise gr.Error("Error while generating " + e.args[0])
|
| 275 |
-
|
| 276 |
-
outputs = outputs.detach().cpu().float()
|
| 277 |
-
results = []
|
| 278 |
-
|
| 279 |
-
for output in outputs:
|
| 280 |
-
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
| 281 |
-
audio_write(
|
| 282 |
-
file.name, output, MODEL.sample_rate, strategy="loudness",
|
| 283 |
-
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
| 284 |
-
|
| 285 |
-
results.append(file.name)
|
| 286 |
-
file_cleaner.add(file.name)
|
| 287 |
-
|
| 288 |
-
print(f"Batch finished: {len(texts)} requests in {time.time() - be:.2f}s")
|
| 289 |
-
return results
|
| 290 |
-
|
| 291 |
-
|
| 292 |
def make_waveform(*args, **kwargs):
|
| 293 |
# Further remove some warnings.
|
| 294 |
be = time.time()
|
|
@@ -301,18 +83,18 @@ def make_waveform(*args, **kwargs):
|
|
| 301 |
|
| 302 |
def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")):
|
| 303 |
global MODEL
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
def _do_predictions(texts,
|
| 317 |
melodies,
|
| 318 |
solver,
|
|
@@ -384,9 +166,7 @@ def predict(model, text,
|
|
| 384 |
melody=None,
|
| 385 |
model_path=None,
|
| 386 |
progress=gr.Progress()):
|
| 387 |
-
"""
|
| 388 |
-
|
| 389 |
-
print(f"🎵 PREDICT FUNCTION CALLED - Text: '{text[:50]}...' Model: {model}")
|
| 390 |
|
| 391 |
if melody is not None:
|
| 392 |
if solver == MIDPOINT:
|
|
@@ -394,15 +174,10 @@ def predict(model, text,
|
|
| 394 |
else:
|
| 395 |
steps = steps//5
|
| 396 |
|
| 397 |
-
global INTERRUPTING
|
| 398 |
INTERRUPTING = False
|
| 399 |
|
| 400 |
-
|
| 401 |
-
if BATCH_PROCESSOR is None:
|
| 402 |
-
BATCH_PROCESSOR = BatchProcessor()
|
| 403 |
-
BATCH_PROCESSOR.start()
|
| 404 |
-
|
| 405 |
-
progress(0, desc="Queuing request...")
|
| 406 |
|
| 407 |
if model_path:
|
| 408 |
model_path = model_path.strip()
|
|
@@ -413,51 +188,30 @@ def predict(model, text,
|
|
| 413 |
"state_dict.bin and compression_state_dict_.bin.")
|
| 414 |
model = model_path
|
| 415 |
|
| 416 |
-
|
| 417 |
-
request_data = {
|
| 418 |
-
'text': text,
|
| 419 |
-
'melody': melody,
|
| 420 |
-
'solver': solver,
|
| 421 |
-
'steps': steps,
|
| 422 |
-
'target_flowstep': target_flowstep,
|
| 423 |
-
'regularize': regularize,
|
| 424 |
-
'regularization_strength': regularization_strength,
|
| 425 |
-
'duration': duration,
|
| 426 |
-
'model': model,
|
| 427 |
-
'request_id': str(uuid.uuid4())
|
| 428 |
-
}
|
| 429 |
-
|
| 430 |
-
# Add to batch processor
|
| 431 |
-
future = BATCH_PROCESSOR.add_request(request_data)
|
| 432 |
|
| 433 |
-
progress(0.
|
| 434 |
|
| 435 |
-
#
|
| 436 |
-
max_wait = 60 # Maximum wait time in seconds
|
| 437 |
-
wait_start = time.time()
|
| 438 |
-
|
| 439 |
-
while not future.done():
|
| 440 |
-
elapsed = time.time() - wait_start
|
| 441 |
-
if elapsed > max_wait:
|
| 442 |
-
raise gr.Error("Request timeout")
|
| 443 |
-
|
| 444 |
-
# Update progress based on wait time
|
| 445 |
-
progress_val = min(0.9, 0.3 + (elapsed / max_wait) * 0.6)
|
| 446 |
-
progress(progress_val, desc="Processing...")
|
| 447 |
-
|
| 448 |
-
if INTERRUPTING:
|
| 449 |
-
raise gr.Error("Interrupted.")
|
| 450 |
-
|
| 451 |
-
time.sleep(0.1)
|
| 452 |
-
|
| 453 |
-
progress(1.0, desc="Complete!")
|
| 454 |
-
|
| 455 |
-
# Get result
|
| 456 |
try:
|
| 457 |
-
result =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
if isinstance(result, list) and len(result) > 0:
|
| 459 |
return result[0]
|
| 460 |
return result
|
|
|
|
| 461 |
except Exception as e:
|
| 462 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 463 |
|
|
@@ -729,9 +483,6 @@ def ui_hf(launch_kwargs):
|
|
| 729 |
|
| 730 |
def cleanup():
|
| 731 |
"""Cleanup function for graceful shutdown"""
|
| 732 |
-
global BATCH_PROCESSOR
|
| 733 |
-
if BATCH_PROCESSOR:
|
| 734 |
-
BATCH_PROCESSOR.stop()
|
| 735 |
print("Cleanup completed")
|
| 736 |
|
| 737 |
|
|
|
|
| 20 |
import time
|
| 21 |
import typing as tp
|
| 22 |
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
import torch
|
| 25 |
import gradio as gr
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
MODEL = None # Last used model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
SPACE_ID = os.environ.get('SPACE_ID', '')
|
| 34 |
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/')
|
| 35 |
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID
|
|
|
|
| 36 |
N_REPEATS = 1
|
| 37 |
INTERRUPTING = False
|
| 38 |
MBD = None
|
|
|
|
| 71 |
file_cleaner = FileCleaner()
|
| 72 |
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
def make_waveform(*args, **kwargs):
|
| 75 |
# Further remove some warnings.
|
| 76 |
be = time.time()
|
|
|
|
| 83 |
|
| 84 |
def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")):
|
| 85 |
global MODEL
|
| 86 |
+
print("Loading model", version)
|
| 87 |
+
if MODEL is None or MODEL.name != version:
|
| 88 |
+
# Clear PyTorch CUDA cache and delete model
|
| 89 |
+
del MODEL
|
| 90 |
+
if torch.cuda.is_available():
|
| 91 |
+
torch.cuda.empty_cache()
|
| 92 |
+
MODEL = None # in case loading would crash
|
| 93 |
+
MODEL = MelodyFlow.get_pretrained(version)
|
| 94 |
+
print(f"Model {version} loaded successfully")
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@spaces.GPU(duration=45)
|
| 98 |
def _do_predictions(texts,
|
| 99 |
melodies,
|
| 100 |
solver,
|
|
|
|
| 166 |
melody=None,
|
| 167 |
model_path=None,
|
| 168 |
progress=gr.Progress()):
|
| 169 |
+
"""Simple predict function without batch processing"""
|
|
|
|
|
|
|
| 170 |
|
| 171 |
if melody is not None:
|
| 172 |
if solver == MIDPOINT:
|
|
|
|
| 174 |
else:
|
| 175 |
steps = steps//5
|
| 176 |
|
| 177 |
+
global INTERRUPTING
|
| 178 |
INTERRUPTING = False
|
| 179 |
|
| 180 |
+
progress(0, desc="Loading model...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
if model_path:
|
| 183 |
model_path = model_path.strip()
|
|
|
|
| 188 |
"state_dict.bin and compression_state_dict_.bin.")
|
| 189 |
model = model_path
|
| 190 |
|
| 191 |
+
load_model(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
progress(0.1, desc="Generating music...")
|
| 194 |
|
| 195 |
+
# Use the simple _do_predictions function for single request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
try:
|
| 197 |
+
result = _do_predictions(
|
| 198 |
+
texts=[text],
|
| 199 |
+
melodies=[melody],
|
| 200 |
+
solver=solver,
|
| 201 |
+
steps=steps,
|
| 202 |
+
target_flowstep=target_flowstep,
|
| 203 |
+
regularize=regularize,
|
| 204 |
+
regularization_strength=regularization_strength,
|
| 205 |
+
duration=duration,
|
| 206 |
+
progress=True
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
progress(1.0, desc="Complete!")
|
| 210 |
+
|
| 211 |
if isinstance(result, list) and len(result) > 0:
|
| 212 |
return result[0]
|
| 213 |
return result
|
| 214 |
+
|
| 215 |
except Exception as e:
|
| 216 |
raise gr.Error(f"Generation failed: {str(e)}")
|
| 217 |
|
|
|
|
| 483 |
|
| 484 |
def cleanup():
|
| 485 |
"""Cleanup function for graceful shutdown"""
|
|
|
|
|
|
|
|
|
|
| 486 |
print("Cleanup completed")
|
| 487 |
|
| 488 |
|