Spaces:
Build error
Build error
adityapathakk
commited on
Commit
·
4a401bd
1
Parent(s):
8c5b605
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import copy
|
3 |
+
import torch
|
4 |
+
import gradio
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
import torch.nn as nn
|
8 |
+
from torchvision import transforms, models
|
9 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
|
11 |
+
os.system("wget https://www.dropbox.com/s/3us120bz5lhoh0t/model_best.pt?dl=0")
|
12 |
+
|
13 |
+
model = models.resnet50(pretrained=True)
|
14 |
+
num_ftrs = model.fc.in_features
|
15 |
+
# Here the size of each output sample is set to 2.
|
16 |
+
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
|
17 |
+
model.fc = nn.Linear(num_ftrs, 7)
|
18 |
+
|
19 |
+
model.load_state_dict(torch.load("./model_best.pt?dl=0", map_location=device))
|
20 |
+
|
21 |
+
# img = Image.open(path).convert('RGB')
|
22 |
+
# from torchvision import transforms
|
23 |
+
|
24 |
+
transforms2 = transforms.Compose([
|
25 |
+
transforms.Resize(256),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
28 |
+
])
|
29 |
+
|
30 |
+
# img = transforms(img)
|
31 |
+
# img = img.unsqueeze(0)
|
32 |
+
# model.eval()
|
33 |
+
|
34 |
+
labels = ["Bacterialblight",
|
35 |
+
"Blast",
|
36 |
+
"Brownspot",
|
37 |
+
"Healthy",
|
38 |
+
"Hispa",
|
39 |
+
"LeafBlast",
|
40 |
+
"Tungro"]
|
41 |
+
# with torch.no_grad():
|
42 |
+
# # preds =
|
43 |
+
# preds = model(img)
|
44 |
+
# score, indices = torch.max(preds, 1)
|
45 |
+
|
46 |
+
def recognize_digit(image):
|
47 |
+
image = transforms2(image)
|
48 |
+
image = image.unsqueeze(0)
|
49 |
+
# image = image.unsqueeze(0)
|
50 |
+
# image = image.reshape(1, -1)
|
51 |
+
# with torch.no_grad():
|
52 |
+
# preds =
|
53 |
+
# img = image.reshape((-1, 3, 256, 256))
|
54 |
+
preds = model(image).flatten()
|
55 |
+
# prediction = model.predict(image).tolist()[0]
|
56 |
+
# score, indices = torch.max(preds, 1)
|
57 |
+
# return {str(indices.item())}
|
58 |
+
return {labels[i]: float(preds[i]) for i in range(7)}
|
59 |
+
|
60 |
+
|
61 |
+
im = gradio.inputs.Image(
|
62 |
+
shape=(256, 256), image_mode="RGB", type="pil")
|
63 |
+
|
64 |
+
iface = gr.Interface(
|
65 |
+
recognize_digit,
|
66 |
+
im,
|
67 |
+
gradio.outputs.Label(num_top_classes=3),
|
68 |
+
live=True,
|
69 |
+
interpretation="default",
|
70 |
+
# examples=[["images/cheetah1.jpg"], ["images/lion.jpg"]],
|
71 |
+
capture_session=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
iface.test_launch()
|
75 |
+
iface.launch()
|