Spaces:
Running
Running
Commit
ยท
610152e
1
Parent(s):
39ab179
integrated both the versions
Browse files- .gitignore +1 -0
- app.py +326 -69
- aurora_pipeline.py +471 -0
- cams_downloader.py +48 -2
- constants.py +71 -2
- data_processor.py +81 -37
- diagnose_cams.py +131 -0
- requirements.txt +7 -3
- templates/aurora_predict.html +586 -0
- templates/aurora_prediction_plot.html +392 -0
- templates/index.html +30 -0
- test_aurora_fix.py +61 -0
- test_cpu_mode.py +124 -0
.gitignore
CHANGED
|
@@ -11,5 +11,6 @@ static/
|
|
| 11 |
plots/
|
| 12 |
uploads/
|
| 13 |
downloads/
|
|
|
|
| 14 |
|
| 15 |
|
|
|
|
| 11 |
plots/
|
| 12 |
uploads/
|
| 13 |
downloads/
|
| 14 |
+
predictions/
|
| 15 |
|
| 16 |
|
app.py
CHANGED
|
@@ -4,6 +4,8 @@ import os
|
|
| 4 |
import json
|
| 5 |
import traceback
|
| 6 |
from pathlib import Path
|
|
|
|
|
|
|
| 7 |
|
| 8 |
from datetime import datetime, timedelta
|
| 9 |
from werkzeug.utils import secure_filename
|
|
@@ -16,6 +18,15 @@ from interactive_plot_generator import InteractiveIndiaMapPlotter
|
|
| 16 |
from cams_downloader import CAMSDownloader
|
| 17 |
from constants import ALLOWED_EXTENSIONS, MAX_FILE_SIZE, COLOR_THEMES
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
app = Flask(__name__)
|
| 20 |
app.secret_key = 'your-secret-key-change-this-in-production' # Change this!
|
| 21 |
app.config['DEBUG'] = False # Explicitly disable debug mode
|
|
@@ -33,8 +44,25 @@ downloader = CAMSDownloader()
|
|
| 33 |
plotter = IndiaMapPlotter()
|
| 34 |
interactive_plotter = InteractiveIndiaMapPlotter()
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# Ensure directories exist
|
| 37 |
-
for directory in ['uploads', 'downloads', 'plots', 'templates', 'static']:
|
| 38 |
Path(directory).mkdir(exist_ok=True)
|
| 39 |
|
| 40 |
|
|
@@ -77,7 +105,8 @@ def index():
|
|
| 77 |
downloaded_files=downloaded_files,
|
| 78 |
cds_ready=downloader.is_client_ready(),
|
| 79 |
current_date=current_date,
|
| 80 |
-
recent_files=recent_files
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
|
|
@@ -239,11 +268,13 @@ def get_pressure_levels(filename, variable):
|
|
| 239 |
print(f"File path: {file_path}")
|
| 240 |
|
| 241 |
processor = NetCDFProcessor(str(file_path))
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
| 247 |
|
| 248 |
return jsonify({
|
| 249 |
'success': True,
|
|
@@ -271,11 +302,13 @@ def get_available_times(filename, variable):
|
|
| 271 |
file_path = Path(app.config['UPLOAD_FOLDER']) / filename
|
| 272 |
|
| 273 |
processor = NetCDFProcessor(str(file_path))
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
|
| 280 |
# Format times for display
|
| 281 |
formatted_times = []
|
|
@@ -324,34 +357,37 @@ def visualize():
|
|
| 324 |
|
| 325 |
# Process the data
|
| 326 |
processor = NetCDFProcessor(str(file_path))
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
if plot_path:
|
| 357 |
plot_filename = Path(plot_path).name
|
|
@@ -412,34 +448,37 @@ def visualize_interactive():
|
|
| 412 |
|
| 413 |
# Process the data
|
| 414 |
processor = NetCDFProcessor(str(file_path))
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
|
|
|
| 441 |
|
| 442 |
-
|
|
|
|
|
|
|
| 443 |
|
| 444 |
if result and result.get('html_content'):
|
| 445 |
# Prepare metadata for display
|
|
@@ -765,10 +804,228 @@ def health_check():
|
|
| 765 |
return jsonify({
|
| 766 |
'status': 'healthy',
|
| 767 |
'timestamp': datetime.now().isoformat(),
|
| 768 |
-
'cds_ready': downloader.is_client_ready()
|
|
|
|
| 769 |
})
|
| 770 |
|
| 771 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 772 |
@app.errorhandler(413)
|
| 773 |
def too_large(e):
|
| 774 |
"""Handle file too large error"""
|
|
@@ -802,4 +1059,4 @@ if __name__ == '__main__':
|
|
| 802 |
print("๐ง CDS API Ready:", downloader.is_client_ready())
|
| 803 |
|
| 804 |
# Run the Flask app
|
| 805 |
-
app.run(debug=
|
|
|
|
| 4 |
import json
|
| 5 |
import traceback
|
| 6 |
from pathlib import Path
|
| 7 |
+
import xarray as xr
|
| 8 |
+
import numpy as np
|
| 9 |
|
| 10 |
from datetime import datetime, timedelta
|
| 11 |
from werkzeug.utils import secure_filename
|
|
|
|
| 18 |
from cams_downloader import CAMSDownloader
|
| 19 |
from constants import ALLOWED_EXTENSIONS, MAX_FILE_SIZE, COLOR_THEMES
|
| 20 |
|
| 21 |
+
# Aurora pipeline imports - with error handling for optional dependency
|
| 22 |
+
try:
|
| 23 |
+
from aurora import Batch, Metadata, AuroraAirPollution, rollout
|
| 24 |
+
from aurora_pipeline import AuroraPipeline
|
| 25 |
+
AURORA_AVAILABLE = True
|
| 26 |
+
except ImportError as e:
|
| 27 |
+
print(f"โ ๏ธ Aurora model not available: {e}")
|
| 28 |
+
AURORA_AVAILABLE = False
|
| 29 |
+
|
| 30 |
app = Flask(__name__)
|
| 31 |
app.secret_key = 'your-secret-key-change-this-in-production' # Change this!
|
| 32 |
app.config['DEBUG'] = False # Explicitly disable debug mode
|
|
|
|
| 44 |
plotter = IndiaMapPlotter()
|
| 45 |
interactive_plotter = InteractiveIndiaMapPlotter()
|
| 46 |
|
| 47 |
+
# Initialize Aurora pipeline if available
|
| 48 |
+
if AURORA_AVAILABLE:
|
| 49 |
+
# Check if we're in development/local mode
|
| 50 |
+
import socket
|
| 51 |
+
hostname = socket.gethostname()
|
| 52 |
+
is_local = any(local_indicator in hostname.lower()
|
| 53 |
+
for local_indicator in ['local', 'macbook', 'laptop', 'desktop', 'dev'])
|
| 54 |
+
|
| 55 |
+
# Force CPU mode for local development to avoid GPU requirements
|
| 56 |
+
cpu_only = is_local or os.getenv('AURORA_CPU_ONLY', 'false').lower() == 'true'
|
| 57 |
+
|
| 58 |
+
aurora_pipeline = AuroraPipeline(cpu_only=cpu_only)
|
| 59 |
+
print(f"๐ฎ Aurora pipeline initialized ({'CPU-only' if cpu_only else 'GPU-enabled'} mode)")
|
| 60 |
+
else:
|
| 61 |
+
aurora_pipeline = None
|
| 62 |
+
print("โ ๏ธ Aurora pipeline not available - missing dependencies")
|
| 63 |
+
|
| 64 |
# Ensure directories exist
|
| 65 |
+
for directory in ['uploads', 'downloads', 'plots', 'templates', 'static', 'predictions']:
|
| 66 |
Path(directory).mkdir(exist_ok=True)
|
| 67 |
|
| 68 |
|
|
|
|
| 105 |
downloaded_files=downloaded_files,
|
| 106 |
cds_ready=downloader.is_client_ready(),
|
| 107 |
current_date=current_date,
|
| 108 |
+
recent_files=recent_files,
|
| 109 |
+
aurora_available=AURORA_AVAILABLE
|
| 110 |
)
|
| 111 |
|
| 112 |
|
|
|
|
| 268 |
print(f"File path: {file_path}")
|
| 269 |
|
| 270 |
processor = NetCDFProcessor(str(file_path))
|
| 271 |
+
try:
|
| 272 |
+
processor.load_dataset()
|
| 273 |
+
processor.detect_variables()
|
| 274 |
+
|
| 275 |
+
pressure_levels = processor.get_available_pressure_levels(variable)
|
| 276 |
+
finally:
|
| 277 |
+
processor.close()
|
| 278 |
|
| 279 |
return jsonify({
|
| 280 |
'success': True,
|
|
|
|
| 302 |
file_path = Path(app.config['UPLOAD_FOLDER']) / filename
|
| 303 |
|
| 304 |
processor = NetCDFProcessor(str(file_path))
|
| 305 |
+
try:
|
| 306 |
+
processor.load_dataset()
|
| 307 |
+
processor.detect_variables()
|
| 308 |
+
|
| 309 |
+
available_times = processor.get_available_times(variable)
|
| 310 |
+
finally:
|
| 311 |
+
processor.close()
|
| 312 |
|
| 313 |
# Format times for display
|
| 314 |
formatted_times = []
|
|
|
|
| 357 |
|
| 358 |
# Process the data
|
| 359 |
processor = NetCDFProcessor(str(file_path))
|
| 360 |
+
try:
|
| 361 |
+
processor.load_dataset()
|
| 362 |
+
processor.detect_variables()
|
| 363 |
+
|
| 364 |
+
# Convert pressure level to float if provided
|
| 365 |
+
pressure_level_val = None
|
| 366 |
+
if pressure_level and pressure_level != 'None':
|
| 367 |
+
try:
|
| 368 |
+
pressure_level_val = float(pressure_level)
|
| 369 |
+
except ValueError:
|
| 370 |
+
pressure_level_val = None
|
| 371 |
+
|
| 372 |
+
time_index_val = request.form.get('time_index')
|
| 373 |
+
# Extract data
|
| 374 |
+
data_values, metadata = processor.extract_data(
|
| 375 |
+
variable,
|
| 376 |
+
time_index = int(time_index_val) if time_index_val and time_index_val != 'None' else 0,
|
| 377 |
+
pressure_level=pressure_level_val
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
# Generate plot
|
| 381 |
+
plot_path = plotter.create_india_map(
|
| 382 |
+
data_values,
|
| 383 |
+
metadata,
|
| 384 |
+
color_theme=color_theme,
|
| 385 |
+
save_plot=True
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
finally:
|
| 389 |
+
# Always close the processor
|
| 390 |
+
processor.close()
|
| 391 |
|
| 392 |
if plot_path:
|
| 393 |
plot_filename = Path(plot_path).name
|
|
|
|
| 448 |
|
| 449 |
# Process the data
|
| 450 |
processor = NetCDFProcessor(str(file_path))
|
| 451 |
+
try:
|
| 452 |
+
processor.load_dataset()
|
| 453 |
+
processor.detect_variables()
|
| 454 |
+
|
| 455 |
+
# Convert pressure level to float if provided
|
| 456 |
+
pressure_level_val = None
|
| 457 |
+
if pressure_level and pressure_level != 'None':
|
| 458 |
+
try:
|
| 459 |
+
pressure_level_val = float(pressure_level)
|
| 460 |
+
except ValueError:
|
| 461 |
+
pressure_level_val = None
|
| 462 |
+
|
| 463 |
+
time_index_val = request.form.get('time_index')
|
| 464 |
+
# Extract data
|
| 465 |
+
data_values, metadata = processor.extract_data(
|
| 466 |
+
variable,
|
| 467 |
+
time_index = int(time_index_val) if time_index_val and time_index_val != 'None' else 0,
|
| 468 |
+
pressure_level=pressure_level_val
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
# Generate interactive plot
|
| 472 |
+
result = interactive_plotter.create_india_map(
|
| 473 |
+
data_values,
|
| 474 |
+
metadata,
|
| 475 |
+
color_theme=color_theme,
|
| 476 |
+
save_plot=True
|
| 477 |
+
)
|
| 478 |
|
| 479 |
+
finally:
|
| 480 |
+
# Always close the processor
|
| 481 |
+
processor.close()
|
| 482 |
|
| 483 |
if result and result.get('html_content'):
|
| 484 |
# Prepare metadata for display
|
|
|
|
| 804 |
return jsonify({
|
| 805 |
'status': 'healthy',
|
| 806 |
'timestamp': datetime.now().isoformat(),
|
| 807 |
+
'cds_ready': downloader.is_client_ready(),
|
| 808 |
+
'aurora_available': AURORA_AVAILABLE
|
| 809 |
})
|
| 810 |
|
| 811 |
|
| 812 |
+
@app.route('/api/aurora_status')
|
| 813 |
+
def aurora_status():
|
| 814 |
+
"""API endpoint to check Aurora readiness and get system info"""
|
| 815 |
+
status = {
|
| 816 |
+
'available': AURORA_AVAILABLE,
|
| 817 |
+
'cpu_only': False,
|
| 818 |
+
'estimated_time': {
|
| 819 |
+
'cpu': {'1_step': 5, '2_steps': 10},
|
| 820 |
+
'gpu': {'4_steps': 3, '6_steps': 4, '10_steps': 6}
|
| 821 |
+
}
|
| 822 |
+
}
|
| 823 |
+
|
| 824 |
+
if AURORA_AVAILABLE and aurora_pipeline:
|
| 825 |
+
status['cpu_only'] = getattr(aurora_pipeline, 'cpu_only', False)
|
| 826 |
+
|
| 827 |
+
return jsonify(status)
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
# Aurora ML Prediction Routes
|
| 831 |
+
@app.route('/aurora_predict', methods=['GET', 'POST'])
|
| 832 |
+
def aurora_predict():
|
| 833 |
+
"""Aurora prediction form and handler"""
|
| 834 |
+
if not AURORA_AVAILABLE:
|
| 835 |
+
flash('Aurora model is not available. Please install required dependencies.', 'error')
|
| 836 |
+
return redirect(url_for('index'))
|
| 837 |
+
|
| 838 |
+
if request.method == 'GET':
|
| 839 |
+
current_date = datetime.now().strftime('%Y-%m-%d')
|
| 840 |
+
return render_template('aurora_predict.html', current_date=current_date)
|
| 841 |
+
|
| 842 |
+
# POST: Run the pipeline
|
| 843 |
+
date_str = request.form.get('date')
|
| 844 |
+
steps = int(request.form.get('steps', 2)) # Default to 2 steps for CPU-friendly execution
|
| 845 |
+
|
| 846 |
+
# Limit steps for local/CPU execution
|
| 847 |
+
if hasattr(aurora_pipeline, 'cpu_only') and aurora_pipeline.cpu_only:
|
| 848 |
+
steps = min(steps, 2) # Max 2 steps for CPU
|
| 849 |
+
if steps != int(request.form.get('steps', 2)):
|
| 850 |
+
flash(f'Steps reduced to {steps} for CPU mode optimization', 'info')
|
| 851 |
+
|
| 852 |
+
if not date_str:
|
| 853 |
+
flash('Please select a valid date.', 'error')
|
| 854 |
+
return redirect(url_for('aurora_predict'))
|
| 855 |
+
|
| 856 |
+
cams_date = date_str
|
| 857 |
+
cams_time = "12:00" # Always use 12:00 UTC for Aurora
|
| 858 |
+
|
| 859 |
+
try:
|
| 860 |
+
print(f"๐ Starting Aurora prediction pipeline for {cams_date}")
|
| 861 |
+
|
| 862 |
+
# 1. Download CAMS data for the selected date
|
| 863 |
+
print("๐ฅ Step 1/5: Downloading CAMS atmospheric data...")
|
| 864 |
+
try:
|
| 865 |
+
zip_path = downloader.download_cams_data(cams_date)
|
| 866 |
+
except Exception as e:
|
| 867 |
+
error_msg = f"Failed to download CAMS data: {str(e)}"
|
| 868 |
+
if "error response" in str(e).lower():
|
| 869 |
+
error_msg += " The CAMS API may have returned an error. Please try a different date or check your CDS API credentials."
|
| 870 |
+
elif "zip" in str(e).lower():
|
| 871 |
+
error_msg += " The downloaded file is corrupted. Please try again."
|
| 872 |
+
flash(error_msg, 'error')
|
| 873 |
+
print(f"โ Download error: {traceback.format_exc()}")
|
| 874 |
+
return redirect(url_for('aurora_predict'))
|
| 875 |
+
|
| 876 |
+
try:
|
| 877 |
+
extracted_files = downloader.extract_cams_files(zip_path)
|
| 878 |
+
print("โ
CAMS data downloaded and extracted")
|
| 879 |
+
except Exception as e:
|
| 880 |
+
error_msg = f"Failed to extract CAMS data: {str(e)}"
|
| 881 |
+
if "not a zip file" in str(e).lower():
|
| 882 |
+
error_msg += " The downloaded file appears to be corrupted or is an error response from the CAMS API."
|
| 883 |
+
elif "html" in str(e).lower() or "error" in str(e).lower():
|
| 884 |
+
error_msg += " The CAMS API returned an error page instead of data."
|
| 885 |
+
flash(error_msg, 'error')
|
| 886 |
+
print(f"โ Extraction error: {traceback.format_exc()}")
|
| 887 |
+
return redirect(url_for('aurora_predict'))
|
| 888 |
+
|
| 889 |
+
# 2. Run Aurora pipeline (batch creation, model, prediction, save NetCDF)
|
| 890 |
+
print("๐ฎ Step 2/5: Initializing Aurora ML pipeline...")
|
| 891 |
+
output_nc = f"predictions_{cams_date}_{cams_time.replace(':','')}.nc"
|
| 892 |
+
|
| 893 |
+
print(f"๐ง Step 3/5: Loading Aurora model (this may take a few minutes)...")
|
| 894 |
+
print(f"โก Step 4/5: Running {steps} prediction steps...")
|
| 895 |
+
|
| 896 |
+
try:
|
| 897 |
+
predictions = aurora_pipeline.run_pipeline(
|
| 898 |
+
date_str=cams_date,
|
| 899 |
+
Batch=Batch,
|
| 900 |
+
Metadata=Metadata,
|
| 901 |
+
AuroraAirPollution=AuroraAirPollution,
|
| 902 |
+
rollout=rollout,
|
| 903 |
+
steps=steps,
|
| 904 |
+
output_path=Path('predictions') / output_nc
|
| 905 |
+
)
|
| 906 |
+
except Exception as e:
|
| 907 |
+
error_msg = f"Aurora model execution failed: {str(e)}"
|
| 908 |
+
if "map_location" in str(e):
|
| 909 |
+
error_msg += " This appears to be a compatibility issue with the Aurora model version."
|
| 910 |
+
elif "checkpoint" in str(e).lower():
|
| 911 |
+
error_msg += " Failed to load the Aurora model. Please check if the model files are properly installed."
|
| 912 |
+
elif "memory" in str(e).lower() or "cuda" in str(e).lower():
|
| 913 |
+
error_msg += " Insufficient memory or GPU issues. Try reducing the number of prediction steps."
|
| 914 |
+
flash(error_msg, 'error')
|
| 915 |
+
print(f"โ Aurora model error: {traceback.format_exc()}")
|
| 916 |
+
return redirect(url_for('aurora_predict'))
|
| 917 |
+
|
| 918 |
+
print("๐พ Step 5/5: Saving results and preparing visualization...")
|
| 919 |
+
print(f"โ
Aurora predictions completed for {cams_date} 12:00 UTC")
|
| 920 |
+
|
| 921 |
+
flash(f'๐ฎ Aurora predictions generated successfully for {cams_date} ({steps} steps)', 'success')
|
| 922 |
+
return redirect(url_for('visualize_prediction', filename=output_nc))
|
| 923 |
+
|
| 924 |
+
except Exception as e:
|
| 925 |
+
# Catch-all for any other unexpected errors
|
| 926 |
+
error_msg = f'Unexpected error in Aurora pipeline: {str(e)}'
|
| 927 |
+
flash(error_msg, 'error')
|
| 928 |
+
print(f"โ Unexpected Aurora pipeline error: {traceback.format_exc()}")
|
| 929 |
+
return redirect(url_for('aurora_predict'))
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
@app.route('/visualize_prediction/<filename>', methods=['GET', 'POST'])
|
| 933 |
+
def visualize_prediction(filename):
|
| 934 |
+
"""Visualize or download Aurora prediction output with variable and step selection"""
|
| 935 |
+
file_path = Path('predictions') / filename
|
| 936 |
+
if not file_path.exists():
|
| 937 |
+
flash('Prediction file not found', 'error')
|
| 938 |
+
return redirect(url_for('index'))
|
| 939 |
+
|
| 940 |
+
ds = xr.open_dataset(file_path)
|
| 941 |
+
variables = list(ds.data_vars.keys())
|
| 942 |
+
steps = ds['step'].values if 'step' in ds else np.arange(ds[variables[0]].shape[0])
|
| 943 |
+
|
| 944 |
+
# Handle form submission
|
| 945 |
+
if request.method == 'POST':
|
| 946 |
+
var_name = request.form.get('variable')
|
| 947 |
+
step = int(request.form.get('step', 0))
|
| 948 |
+
color_theme = request.form.get('color_theme', 'viridis')
|
| 949 |
+
else:
|
| 950 |
+
var_name = variables[0]
|
| 951 |
+
step = 0
|
| 952 |
+
color_theme = 'viridis'
|
| 953 |
+
|
| 954 |
+
# Prepare data for plotting
|
| 955 |
+
data = ds[var_name].values
|
| 956 |
+
if data.ndim == 3:
|
| 957 |
+
data_to_plot = data[step]
|
| 958 |
+
elif data.ndim == 2:
|
| 959 |
+
data_to_plot = data
|
| 960 |
+
else:
|
| 961 |
+
flash('Prediction data shape not supported for plotting', 'error')
|
| 962 |
+
return redirect(url_for('index'))
|
| 963 |
+
|
| 964 |
+
# Extract lat/lon
|
| 965 |
+
lats = ds['lat'].values if 'lat' in ds else ds['latitude'].values
|
| 966 |
+
lons = ds['lon'].values if 'lon' in ds else ds['longitude'].values
|
| 967 |
+
|
| 968 |
+
# Prepare metadata for plot
|
| 969 |
+
from constants import NETCDF_VARIABLES
|
| 970 |
+
var_info = NETCDF_VARIABLES.get(var_name, {})
|
| 971 |
+
display_name = var_info.get('name', var_name)
|
| 972 |
+
units = ds[var_name].attrs.get('units', var_info.get('units', ''))
|
| 973 |
+
# Use user-selected color theme, fallback to variable default, then viridis
|
| 974 |
+
if 'color_theme' not in locals():
|
| 975 |
+
color_theme = var_info.get('cmap', 'viridis')
|
| 976 |
+
|
| 977 |
+
metadata = {
|
| 978 |
+
'variable_name': var_name,
|
| 979 |
+
'display_name': display_name,
|
| 980 |
+
'units': units,
|
| 981 |
+
'lats': lats,
|
| 982 |
+
'lons': lons,
|
| 983 |
+
'pressure_level': None,
|
| 984 |
+
'timestamp_str': str(steps[step]) if len(steps) > step else '',
|
| 985 |
+
}
|
| 986 |
+
|
| 987 |
+
# Generate plot
|
| 988 |
+
plot_path = plotter.create_india_map(
|
| 989 |
+
data_to_plot,
|
| 990 |
+
metadata,
|
| 991 |
+
color_theme=color_theme,
|
| 992 |
+
save_plot=True,
|
| 993 |
+
custom_title=f"Aurora Prediction: {display_name} (step {step})"
|
| 994 |
+
)
|
| 995 |
+
|
| 996 |
+
if plot_path:
|
| 997 |
+
plot_filename = Path(plot_path).name
|
| 998 |
+
|
| 999 |
+
# Provide download link for NetCDF
|
| 1000 |
+
download_url = url_for('download_prediction_netcdf', filename=filename)
|
| 1001 |
+
|
| 1002 |
+
return render_template(
|
| 1003 |
+
'aurora_prediction_plot.html',
|
| 1004 |
+
plot_filename=plot_filename,
|
| 1005 |
+
var_name=var_name,
|
| 1006 |
+
step=step,
|
| 1007 |
+
variables=variables,
|
| 1008 |
+
steps=range(len(steps)),
|
| 1009 |
+
filename=filename,
|
| 1010 |
+
download_url=download_url,
|
| 1011 |
+
color_themes=COLOR_THEMES,
|
| 1012 |
+
current_color_theme=color_theme
|
| 1013 |
+
)
|
| 1014 |
+
else:
|
| 1015 |
+
flash('Error generating prediction plot', 'error')
|
| 1016 |
+
return redirect(url_for('index'))
|
| 1017 |
+
|
| 1018 |
+
|
| 1019 |
+
@app.route('/download_prediction_netcdf/<filename>')
|
| 1020 |
+
def download_prediction_netcdf(filename):
|
| 1021 |
+
"""Download the Aurora prediction NetCDF file"""
|
| 1022 |
+
file_path = Path('predictions') / filename
|
| 1023 |
+
if not file_path.exists():
|
| 1024 |
+
flash('Prediction file not found', 'error')
|
| 1025 |
+
return redirect(url_for('index'))
|
| 1026 |
+
return send_file(str(file_path), as_attachment=True, download_name=filename)
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
@app.errorhandler(413)
|
| 1030 |
def too_large(e):
|
| 1031 |
"""Handle file too large error"""
|
|
|
|
| 1059 |
print("๐ง CDS API Ready:", downloader.is_client_ready())
|
| 1060 |
|
| 1061 |
# Run the Flask app
|
| 1062 |
+
app.run(debug=True, host='0.0.0.0', port=port)
|
aurora_pipeline.py
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# aurora_pipeline.py
|
| 2 |
+
# End-to-end pipeline for CAMS data โ Aurora model โ predictions โ NetCDF
|
| 3 |
+
import subprocess
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
def get_freest_cuda_device_id():
|
| 7 |
+
"""Get the freest CUDA device ID if available, otherwise return None for CPU mode"""
|
| 8 |
+
try:
|
| 9 |
+
# Check if nvidia-smi exists first
|
| 10 |
+
result = subprocess.run(
|
| 11 |
+
['nvidia-smi', '--query-gpu=memory.free', '--format=csv,nounits,noheader'],
|
| 12 |
+
stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8'
|
| 13 |
+
)
|
| 14 |
+
if result.returncode == 0:
|
| 15 |
+
memory_free = [int(x) for x in result.stdout.strip().split('\n')]
|
| 16 |
+
device_id = memory_free.index(max(memory_free))
|
| 17 |
+
print(f"๐ฎ GPU available - using device {device_id}")
|
| 18 |
+
return str(device_id)
|
| 19 |
+
else:
|
| 20 |
+
print("โ ๏ธ nvidia-smi returned error, using CPU mode")
|
| 21 |
+
return None
|
| 22 |
+
except (FileNotFoundError, subprocess.SubprocessError, Exception) as e:
|
| 23 |
+
print(f"๐ป No GPU detected, using CPU mode: {e}")
|
| 24 |
+
return None
|
| 25 |
+
|
| 26 |
+
# Set CUDA_VISIBLE_DEVICES only if GPU is available
|
| 27 |
+
gpu_device = get_freest_cuda_device_id()
|
| 28 |
+
if gpu_device is not None:
|
| 29 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_device
|
| 30 |
+
else:
|
| 31 |
+
# Force CPU mode
|
| 32 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 33 |
+
print("๐ง Configured for CPU-only execution")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
import torch
|
| 37 |
+
import xarray as xr
|
| 38 |
+
import pickle
|
| 39 |
+
from pathlib import Path
|
| 40 |
+
import numpy as np
|
| 41 |
+
import zipfile
|
| 42 |
+
import cdsapi
|
| 43 |
+
from huggingface_hub import hf_hub_download
|
| 44 |
+
import matplotlib.pyplot as plt
|
| 45 |
+
import cartopy.crs as ccrs
|
| 46 |
+
import cartopy.feature as cfeature
|
| 47 |
+
from datetime import datetime, timedelta
|
| 48 |
+
from aurora import Batch, Metadata, AuroraAirPollution, rollout
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class AuroraPipeline:
|
| 52 |
+
def __init__(self,
|
| 53 |
+
extracted_dir="downloads/extracted",
|
| 54 |
+
static_path="static_vars.pkl",
|
| 55 |
+
model_ckpt="aurora-0.4-air-pollution.ckpt",
|
| 56 |
+
model_repo="microsoft/aurora",
|
| 57 |
+
device=None,
|
| 58 |
+
cpu_only=False):
|
| 59 |
+
|
| 60 |
+
# Device selection with CPU fallback
|
| 61 |
+
if cpu_only or device == "cpu":
|
| 62 |
+
self.device = "cpu"
|
| 63 |
+
print("๐ป Aurora configured for CPU-only execution")
|
| 64 |
+
elif device is None:
|
| 65 |
+
# Auto-detect: prefer CPU for local testing, GPU for production
|
| 66 |
+
if torch.cuda.is_available() and not cpu_only:
|
| 67 |
+
self.device = "cuda:0"
|
| 68 |
+
print(f"๐ฎ Aurora using GPU: {self.device}")
|
| 69 |
+
else:
|
| 70 |
+
self.device = "cpu"
|
| 71 |
+
print("๐ป Aurora using CPU (GPU not available or CPU forced)")
|
| 72 |
+
else:
|
| 73 |
+
self.device = device
|
| 74 |
+
print(f"๐ง Aurora using specified device: {self.device}")
|
| 75 |
+
|
| 76 |
+
self.extracted_dir = Path(extracted_dir)
|
| 77 |
+
self.static_path = Path(static_path)
|
| 78 |
+
self.model_ckpt = model_ckpt
|
| 79 |
+
self.model_repo = model_repo
|
| 80 |
+
self.cpu_only = cpu_only or (self.device == "cpu")
|
| 81 |
+
|
| 82 |
+
# Load static variables with error handling
|
| 83 |
+
try:
|
| 84 |
+
self.static_vars = self._load_static_vars()
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"โ ๏ธ Warning: Could not load static variables: {e}")
|
| 87 |
+
self.static_vars = {}
|
| 88 |
+
|
| 89 |
+
self.model = None
|
| 90 |
+
|
| 91 |
+
def _load_static_vars(self):
|
| 92 |
+
"""Load static variables from Hugging Face Hub"""
|
| 93 |
+
static_path = hf_hub_download(
|
| 94 |
+
repo_id="microsoft/aurora",
|
| 95 |
+
filename="aurora-0.4-air-pollution-static.pickle",
|
| 96 |
+
)
|
| 97 |
+
if not Path(static_path).exists():
|
| 98 |
+
raise FileNotFoundError(f"Static variables file not found: {static_path}")
|
| 99 |
+
with open(static_path, "rb") as f:
|
| 100 |
+
static_vars = pickle.load(f)
|
| 101 |
+
return static_vars
|
| 102 |
+
|
| 103 |
+
def create_batch(self, date_str, Batch, Metadata):
|
| 104 |
+
"""Create a batch for Aurora model from CAMS data"""
|
| 105 |
+
surface_path = self.extracted_dir / f"{date_str}-cams-surface.nc"
|
| 106 |
+
atmos_path = self.extracted_dir / f"{date_str}-cams-atmospheric.nc"
|
| 107 |
+
if not surface_path.exists() or not atmos_path.exists():
|
| 108 |
+
raise FileNotFoundError(f"Missing CAMS files for {date_str} in {self.extracted_dir}")
|
| 109 |
+
|
| 110 |
+
surf_vars_ds = xr.open_dataset(surface_path, engine="netcdf4", decode_timedelta=True)
|
| 111 |
+
atmos_vars_ds = xr.open_dataset(atmos_path, engine="netcdf4", decode_timedelta=True)
|
| 112 |
+
|
| 113 |
+
# Select zero-hour forecast
|
| 114 |
+
surf_vars_ds = surf_vars_ds.isel(forecast_period=0)
|
| 115 |
+
atmos_vars_ds = atmos_vars_ds.isel(forecast_period=0)
|
| 116 |
+
|
| 117 |
+
batch = Batch(
|
| 118 |
+
surf_vars={
|
| 119 |
+
"2t": torch.from_numpy(surf_vars_ds["t2m"].values[None]),
|
| 120 |
+
"10u": torch.from_numpy(surf_vars_ds["u10"].values[None]),
|
| 121 |
+
"10v": torch.from_numpy(surf_vars_ds["v10"].values[None]),
|
| 122 |
+
"msl": torch.from_numpy(surf_vars_ds["msl"].values[None]),
|
| 123 |
+
"pm1": torch.from_numpy(surf_vars_ds["pm1"].values[None]),
|
| 124 |
+
"pm2p5": torch.from_numpy(surf_vars_ds["pm2p5"].values[None]),
|
| 125 |
+
"pm10": torch.from_numpy(surf_vars_ds["pm10"].values[None]),
|
| 126 |
+
"tcco": torch.from_numpy(surf_vars_ds["tcco"].values[None]),
|
| 127 |
+
"tc_no": torch.from_numpy(surf_vars_ds["tc_no"].values[None]),
|
| 128 |
+
"tcno2": torch.from_numpy(surf_vars_ds["tcno2"].values[None]),
|
| 129 |
+
"gtco3": torch.from_numpy(surf_vars_ds["gtco3"].values[None]),
|
| 130 |
+
"tcso2": torch.from_numpy(surf_vars_ds["tcso2"].values[None]),
|
| 131 |
+
},
|
| 132 |
+
static_vars={k: torch.from_numpy(v) for k, v in self.static_vars.items()},
|
| 133 |
+
atmos_vars={
|
| 134 |
+
"t": torch.from_numpy(atmos_vars_ds["t"].values[None]),
|
| 135 |
+
"u": torch.from_numpy(atmos_vars_ds["u"].values[None]),
|
| 136 |
+
"v": torch.from_numpy(atmos_vars_ds["v"].values[None]),
|
| 137 |
+
"q": torch.from_numpy(atmos_vars_ds["q"].values[None]),
|
| 138 |
+
"z": torch.from_numpy(atmos_vars_ds["z"].values[None]),
|
| 139 |
+
"co": torch.from_numpy(atmos_vars_ds["co"].values[None]),
|
| 140 |
+
"no": torch.from_numpy(atmos_vars_ds["no"].values[None]),
|
| 141 |
+
"no2": torch.from_numpy(atmos_vars_ds["no2"].values[None]),
|
| 142 |
+
"go3": torch.from_numpy(atmos_vars_ds["go3"].values[None]),
|
| 143 |
+
"so2": torch.from_numpy(atmos_vars_ds["so2"].values[None]),
|
| 144 |
+
},
|
| 145 |
+
metadata=Metadata(
|
| 146 |
+
lat=torch.from_numpy(atmos_vars_ds.latitude.values),
|
| 147 |
+
lon=torch.from_numpy(atmos_vars_ds.longitude.values),
|
| 148 |
+
time=(atmos_vars_ds.valid_time.values.astype("datetime64[s]").tolist()[-1],),
|
| 149 |
+
atmos_levels=tuple(int(level) for level in atmos_vars_ds.pressure_level.values),
|
| 150 |
+
),
|
| 151 |
+
)
|
| 152 |
+
return batch
|
| 153 |
+
def load_model(self, AuroraAirPollution):
|
| 154 |
+
"""Load Aurora model with CPU/GPU optimization"""
|
| 155 |
+
import gc
|
| 156 |
+
|
| 157 |
+
print(f"๐ Loading Aurora model on {self.device}")
|
| 158 |
+
|
| 159 |
+
# Memory check for GPU
|
| 160 |
+
if self.device != "cpu" and torch.cuda.is_available():
|
| 161 |
+
print(f"๐ GPU Memory BEFORE loading model:")
|
| 162 |
+
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
|
| 163 |
+
print(f" Reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
|
| 164 |
+
print(f" Free: {(torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_reserved(0)) / 1024**3:.2f} GB")
|
| 165 |
+
|
| 166 |
+
# Clear cache
|
| 167 |
+
if torch.cuda.is_available():
|
| 168 |
+
torch.cuda.empty_cache()
|
| 169 |
+
gc.collect()
|
| 170 |
+
|
| 171 |
+
# Initialize model with CPU-friendly settings
|
| 172 |
+
if self.cpu_only:
|
| 173 |
+
print("๐ป Initializing model for CPU execution...")
|
| 174 |
+
# Set CPU-friendly torch settings
|
| 175 |
+
torch.set_num_threads(2) # Limit CPU threads for local testing
|
| 176 |
+
model = AuroraAirPollution()
|
| 177 |
+
else:
|
| 178 |
+
model = AuroraAirPollution()
|
| 179 |
+
|
| 180 |
+
# Load checkpoint with device mapping
|
| 181 |
+
try:
|
| 182 |
+
if self.cpu_only:
|
| 183 |
+
print("๐ Loading checkpoint for CPU execution...")
|
| 184 |
+
# For CPU mode, we may need to handle device mapping differently
|
| 185 |
+
model.load_checkpoint(self.model_repo, self.model_ckpt)
|
| 186 |
+
else:
|
| 187 |
+
print("๐ Loading checkpoint for GPU execution...")
|
| 188 |
+
model.load_checkpoint(self.model_repo, self.model_ckpt)
|
| 189 |
+
except Exception as e:
|
| 190 |
+
print(f"โ ๏ธ Checkpoint loading failed: {e}")
|
| 191 |
+
print("๐ Trying alternative loading method...")
|
| 192 |
+
try:
|
| 193 |
+
# Alternative: try loading without any special parameters
|
| 194 |
+
model.load_checkpoint(self.model_repo, self.model_ckpt)
|
| 195 |
+
print("โ
Checkpoint loaded successfully with fallback method")
|
| 196 |
+
except Exception as e2:
|
| 197 |
+
print(f"โ All loading methods failed: {e2}")
|
| 198 |
+
# Set device to CPU as last resort
|
| 199 |
+
self.device = "cpu"
|
| 200 |
+
self.cpu_only = True
|
| 201 |
+
raise RuntimeError(f"Failed to load Aurora model: {e2}")
|
| 202 |
+
|
| 203 |
+
model.eval()
|
| 204 |
+
|
| 205 |
+
# Move to device
|
| 206 |
+
model = model.to(self.device)
|
| 207 |
+
|
| 208 |
+
# Memory check after loading
|
| 209 |
+
if self.device != "cpu" and torch.cuda.is_available():
|
| 210 |
+
print(f"๐ GPU Memory AFTER model load:")
|
| 211 |
+
print(f" Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
|
| 212 |
+
print(f" Reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
|
| 213 |
+
|
| 214 |
+
self.model = model
|
| 215 |
+
print(f"โ
Aurora model loaded on {self.device}")
|
| 216 |
+
|
| 217 |
+
if self.cpu_only:
|
| 218 |
+
print("โ ๏ธ WARNING: CPU mode will be slower than GPU. Consider using fewer steps for faster inference.")
|
| 219 |
+
|
| 220 |
+
return model
|
| 221 |
+
|
| 222 |
+
def predict(self, batch, rollout, steps=4):
|
| 223 |
+
"""Run model prediction with CPU/GPU optimization"""
|
| 224 |
+
if self.model is None:
|
| 225 |
+
raise RuntimeError("Model not loaded. Call load_model() first.")
|
| 226 |
+
|
| 227 |
+
# Limit steps for CPU to avoid memory issues
|
| 228 |
+
if self.cpu_only and steps > 2:
|
| 229 |
+
print(f"โ ๏ธ CPU mode: reducing steps from {steps} to 2 for memory efficiency")
|
| 230 |
+
steps = 2
|
| 231 |
+
|
| 232 |
+
print(f"๐ Running {steps} prediction steps on {self.device}...")
|
| 233 |
+
|
| 234 |
+
# Move batch to device
|
| 235 |
+
batch = batch.to(self.device)
|
| 236 |
+
|
| 237 |
+
# CPU-friendly inference settings
|
| 238 |
+
if self.cpu_only:
|
| 239 |
+
torch.set_grad_enabled(False) # Disable gradients for inference
|
| 240 |
+
|
| 241 |
+
with torch.inference_mode():
|
| 242 |
+
predictions = []
|
| 243 |
+
for step in range(steps):
|
| 244 |
+
print(f" Step {step + 1}/{steps}...")
|
| 245 |
+
if step == 0:
|
| 246 |
+
# First prediction from initial batch
|
| 247 |
+
pred_generator = rollout(self.model, batch, steps=1)
|
| 248 |
+
pred = next(pred_generator)
|
| 249 |
+
else:
|
| 250 |
+
# Subsequent predictions from previous output
|
| 251 |
+
pred_generator = rollout(self.model, pred, steps=1)
|
| 252 |
+
pred = next(pred_generator)
|
| 253 |
+
|
| 254 |
+
# Move to CPU immediately to save memory
|
| 255 |
+
predictions.append(pred.to("cpu"))
|
| 256 |
+
|
| 257 |
+
# Clear GPU cache after each step if using GPU
|
| 258 |
+
if not self.cpu_only and torch.cuda.is_available():
|
| 259 |
+
torch.cuda.empty_cache()
|
| 260 |
+
|
| 261 |
+
print(f"โ
Completed {len(predictions)} prediction steps")
|
| 262 |
+
return predictions
|
| 263 |
+
|
| 264 |
+
def save_predictions_to_netcdf(self, predictions, output_path):
|
| 265 |
+
"""Save all prediction steps to a single NetCDF file compatible with visualization pipeline"""
|
| 266 |
+
output_path = Path(output_path)
|
| 267 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 268 |
+
|
| 269 |
+
print(f"๐พ Saving {len(predictions)} prediction steps to {output_path}")
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
# Try the new single-file method
|
| 273 |
+
return self._save_predictions_single_file(predictions, output_path)
|
| 274 |
+
except Exception as e:
|
| 275 |
+
print(f"โ ๏ธ Single file method failed: {e}")
|
| 276 |
+
print(f"๐ Falling back to original method...")
|
| 277 |
+
return self._save_predictions_original_method(predictions, output_path)
|
| 278 |
+
|
| 279 |
+
def _save_predictions_single_file(self, predictions, output_path):
|
| 280 |
+
"""Save all prediction steps to a single NetCDF file (new method)"""
|
| 281 |
+
# Get metadata from first prediction
|
| 282 |
+
first_pred = predictions[0]
|
| 283 |
+
metadata = first_pred.metadata
|
| 284 |
+
|
| 285 |
+
# Extract coordinates
|
| 286 |
+
lats = metadata.lat.cpu().numpy() if hasattr(metadata.lat, 'cpu') else metadata.lat.numpy()
|
| 287 |
+
lons = metadata.lon.cpu().numpy() if hasattr(metadata.lon, 'cpu') else metadata.lon.numpy()
|
| 288 |
+
|
| 289 |
+
# Create step coordinate
|
| 290 |
+
steps = np.arange(len(predictions))
|
| 291 |
+
|
| 292 |
+
# Prepare data variables
|
| 293 |
+
data_vars = {}
|
| 294 |
+
coords = {
|
| 295 |
+
'step': ('step', steps),
|
| 296 |
+
'lat': ('lat', lats),
|
| 297 |
+
'lon': ('lon', lons)
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
# Add surface variables
|
| 301 |
+
surf_var_names = list(first_pred.surf_vars.keys())
|
| 302 |
+
for var in surf_var_names:
|
| 303 |
+
# Stack predictions along step dimension
|
| 304 |
+
var_data_list = []
|
| 305 |
+
for pred in predictions:
|
| 306 |
+
var_tensor = pred.surf_vars[var]
|
| 307 |
+
# Move to CPU and convert to numpy
|
| 308 |
+
var_data = var_tensor.cpu().numpy() if hasattr(var_tensor, 'cpu') else var_tensor.numpy()
|
| 309 |
+
|
| 310 |
+
# Robust dimension handling: squeeze all singleton dimensions and keep only last 2 (lat, lon)
|
| 311 |
+
var_data = np.squeeze(var_data) # Remove all singleton dimensions
|
| 312 |
+
|
| 313 |
+
# Ensure we have exactly 2 dimensions (lat, lon) for surface variables
|
| 314 |
+
if var_data.ndim > 2:
|
| 315 |
+
# Take the last 2 dimensions as lat, lon
|
| 316 |
+
var_data = var_data[..., :, :]
|
| 317 |
+
# If still more than 2D, take the first slice of extra dimensions
|
| 318 |
+
while var_data.ndim > 2:
|
| 319 |
+
var_data = var_data[0]
|
| 320 |
+
elif var_data.ndim < 2:
|
| 321 |
+
raise ValueError(f"Surface variable {var} has insufficient dimensions: {var_data.shape}")
|
| 322 |
+
|
| 323 |
+
var_data_list.append(var_data)
|
| 324 |
+
|
| 325 |
+
# Stack along step dimension: (steps, lat, lon)
|
| 326 |
+
arr = np.stack(var_data_list, axis=0)
|
| 327 |
+
data_vars[var] = (['step', 'lat', 'lon'], arr)
|
| 328 |
+
|
| 329 |
+
# Add atmospheric variables if present
|
| 330 |
+
if hasattr(first_pred, 'atmos_vars') and first_pred.atmos_vars:
|
| 331 |
+
atmos_levels = list(metadata.atmos_levels) if hasattr(metadata, 'atmos_levels') else None
|
| 332 |
+
if atmos_levels:
|
| 333 |
+
coords['pressure_level'] = ('pressure_level', atmos_levels)
|
| 334 |
+
|
| 335 |
+
atmos_var_names = list(first_pred.atmos_vars.keys())
|
| 336 |
+
for var in atmos_var_names:
|
| 337 |
+
var_data_list = []
|
| 338 |
+
for pred in predictions:
|
| 339 |
+
var_tensor = pred.atmos_vars[var]
|
| 340 |
+
# Move to CPU and convert to numpy
|
| 341 |
+
var_data = var_tensor.cpu().numpy() if hasattr(var_tensor, 'cpu') else var_tensor.numpy()
|
| 342 |
+
|
| 343 |
+
# Robust dimension handling: squeeze singleton dimensions but keep 3D structure
|
| 344 |
+
var_data = np.squeeze(var_data) # Remove singleton dimensions
|
| 345 |
+
|
| 346 |
+
# Ensure we have exactly 3 dimensions (levels, lat, lon) for atmospheric variables
|
| 347 |
+
if var_data.ndim > 3:
|
| 348 |
+
# Take the last 3 dimensions as levels, lat, lon
|
| 349 |
+
var_data = var_data[..., :, :, :]
|
| 350 |
+
# If still more than 3D, take the first slice of extra dimensions
|
| 351 |
+
while var_data.ndim > 3:
|
| 352 |
+
var_data = var_data[0]
|
| 353 |
+
elif var_data.ndim < 3:
|
| 354 |
+
raise ValueError(f"Atmospheric variable {var} has insufficient dimensions: {var_data.shape}")
|
| 355 |
+
|
| 356 |
+
var_data_list.append(var_data)
|
| 357 |
+
|
| 358 |
+
# Stack along step dimension: (steps, levels, lat, lon)
|
| 359 |
+
arr = np.stack(var_data_list, axis=0)
|
| 360 |
+
data_vars[f"{var}_atmos"] = (['step', 'pressure_level', 'lat', 'lon'], arr)
|
| 361 |
+
|
| 362 |
+
# Create dataset
|
| 363 |
+
ds = xr.Dataset(data_vars, coords=coords)
|
| 364 |
+
|
| 365 |
+
# Add global attributes
|
| 366 |
+
ds.attrs.update({
|
| 367 |
+
'title': 'Aurora Air Pollution Model Predictions',
|
| 368 |
+
'source': 'Aurora model by Microsoft Research',
|
| 369 |
+
'creation_date': datetime.now().isoformat(),
|
| 370 |
+
'forecast_steps': len(predictions),
|
| 371 |
+
'spatial_resolution': f"{abs(lons[1] - lons[0]):.3f} degrees",
|
| 372 |
+
'conventions': 'CF-1.8'
|
| 373 |
+
})
|
| 374 |
+
|
| 375 |
+
# Add variable attributes for better visualization
|
| 376 |
+
var_attrs = {
|
| 377 |
+
'2t': {'long_name': '2 metre temperature', 'units': 'K'},
|
| 378 |
+
'10u': {'long_name': '10 metre U wind component', 'units': 'm s-1'},
|
| 379 |
+
'10v': {'long_name': '10 metre V wind component', 'units': 'm s-1'},
|
| 380 |
+
'msl': {'long_name': 'Mean sea level pressure', 'units': 'Pa'},
|
| 381 |
+
'pm1': {'long_name': 'Particulate matter d < 1 um', 'units': 'kg m-3'},
|
| 382 |
+
'pm2p5': {'long_name': 'Particulate matter d < 2.5 um', 'units': 'kg m-3'},
|
| 383 |
+
'pm10': {'long_name': 'Particulate matter d < 10 um', 'units': 'kg m-3'},
|
| 384 |
+
'tcco': {'long_name': 'Total column carbon monoxide', 'units': 'kg m-2'},
|
| 385 |
+
'tc_no': {'long_name': 'Total column nitrogen monoxide', 'units': 'kg m-2'},
|
| 386 |
+
'tcno2': {'long_name': 'Total column nitrogen dioxide', 'units': 'kg m-2'},
|
| 387 |
+
'gtco3': {'long_name': 'Total column ozone', 'units': 'kg m-2'},
|
| 388 |
+
'tcso2': {'long_name': 'Total column sulphur dioxide', 'units': 'kg m-2'}
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
for var_name, attrs in var_attrs.items():
|
| 392 |
+
if var_name in ds.data_vars:
|
| 393 |
+
ds[var_name].attrs.update(attrs)
|
| 394 |
+
|
| 395 |
+
# Save to NetCDF
|
| 396 |
+
ds.to_netcdf(output_path, format='NETCDF4')
|
| 397 |
+
print(f"โ
Predictions saved to {output_path}")
|
| 398 |
+
print(f" Variables: {list(ds.data_vars.keys())}")
|
| 399 |
+
print(f" Steps: {len(steps)}")
|
| 400 |
+
print(f" Spatial grid: {len(lats)}x{len(lons)}")
|
| 401 |
+
|
| 402 |
+
return output_path
|
| 403 |
+
|
| 404 |
+
def _save_predictions_original_method(self, predictions, output_path):
|
| 405 |
+
"""Fallback: Save predictions using the original method (separate files per step)"""
|
| 406 |
+
output_dir = Path(output_path)
|
| 407 |
+
output_dir.mkdir(exist_ok=True)
|
| 408 |
+
|
| 409 |
+
for step, pred in enumerate(predictions):
|
| 410 |
+
# Create xarray dataset for surface variables
|
| 411 |
+
surf_data = {}
|
| 412 |
+
for var_name, var_data in pred.surf_vars.items():
|
| 413 |
+
surf_data[var_name] = (
|
| 414 |
+
["time", "batch", "lat", "lon"],
|
| 415 |
+
var_data.cpu().numpy() if hasattr(var_data, 'cpu') else var_data.numpy()
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Create xarray dataset for atmospheric variables
|
| 419 |
+
atmos_data = {}
|
| 420 |
+
for var_name, var_data in pred.atmos_vars.items():
|
| 421 |
+
atmos_data[var_name] = (
|
| 422 |
+
["time", "batch", "level", "lat", "lon"],
|
| 423 |
+
var_data.cpu().numpy() if hasattr(var_data, 'cpu') else var_data.numpy()
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# Create surface dataset
|
| 427 |
+
surf_ds = xr.Dataset(
|
| 428 |
+
surf_data,
|
| 429 |
+
coords={
|
| 430 |
+
"time": [pred.metadata.time[0]],
|
| 431 |
+
"batch": [0],
|
| 432 |
+
"lat": pred.metadata.lat.cpu().numpy() if hasattr(pred.metadata.lat, 'cpu') else pred.metadata.lat.numpy(),
|
| 433 |
+
"lon": pred.metadata.lon.cpu().numpy() if hasattr(pred.metadata.lon, 'cpu') else pred.metadata.lon.numpy(),
|
| 434 |
+
}
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
# Create atmospheric dataset
|
| 438 |
+
atmos_ds = xr.Dataset(
|
| 439 |
+
atmos_data,
|
| 440 |
+
coords={
|
| 441 |
+
"time": [pred.metadata.time[0]],
|
| 442 |
+
"batch": [0],
|
| 443 |
+
"level": list(pred.metadata.atmos_levels),
|
| 444 |
+
"lat": pred.metadata.lat.cpu().numpy() if hasattr(pred.metadata.lat, 'cpu') else pred.metadata.lat.numpy(),
|
| 445 |
+
"lon": pred.metadata.lon.cpu().numpy() if hasattr(pred.metadata.lon, 'cpu') else pred.metadata.lon.numpy(),
|
| 446 |
+
}
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# Save to NetCDF
|
| 450 |
+
surf_filename = f"step_{step:02d}_surface.nc"
|
| 451 |
+
atmos_filename = f"step_{step:02d}_atmospheric.nc"
|
| 452 |
+
|
| 453 |
+
surf_ds.to_netcdf(output_dir / surf_filename)
|
| 454 |
+
atmos_ds.to_netcdf(output_dir / atmos_filename)
|
| 455 |
+
|
| 456 |
+
print(f"Saved step {step} predictions (fallback method)")
|
| 457 |
+
|
| 458 |
+
return output_dir
|
| 459 |
+
|
| 460 |
+
def run_pipeline(self, date_str, Batch, Metadata, AuroraAirPollution, rollout, steps=4, output_path=None):
|
| 461 |
+
"""Full pipeline: batch creation, model loading, prediction, save output"""
|
| 462 |
+
batch = self.create_batch(date_str, Batch, Metadata)
|
| 463 |
+
self.load_model(AuroraAirPollution)
|
| 464 |
+
predictions = self.predict(batch, rollout, steps=steps)
|
| 465 |
+
if output_path:
|
| 466 |
+
self.save_predictions_to_netcdf(predictions, output_path)
|
| 467 |
+
return predictions
|
| 468 |
+
|
| 469 |
+
# Example usage (not run on import)
|
| 470 |
+
if __name__ == "__main__":
|
| 471 |
+
pass
|
cams_downloader.py
CHANGED
|
@@ -157,6 +157,7 @@ class CAMSDownloader:
|
|
| 157 |
|
| 158 |
try:
|
| 159 |
# Make the API request
|
|
|
|
| 160 |
self.client.retrieve(
|
| 161 |
"cams-global-atmospheric-composition-forecasts",
|
| 162 |
{
|
|
@@ -171,12 +172,30 @@ class CAMSDownloader:
|
|
| 171 |
str(filepath),
|
| 172 |
)
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
except Exception as e:
|
| 178 |
# Clean up partial download
|
| 179 |
if filepath.exists():
|
|
|
|
| 180 |
filepath.unlink()
|
| 181 |
raise Exception(f"Error downloading CAMS data: {str(e)}")
|
| 182 |
|
|
@@ -194,6 +213,33 @@ class CAMSDownloader:
|
|
| 194 |
if not zip_path.exists():
|
| 195 |
raise FileNotFoundError(f"ZIP file not found: {zip_path}")
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
# Extract date from filename
|
| 198 |
date_str = zip_path.stem.replace("-cams.nc", "")
|
| 199 |
|
|
|
|
| 157 |
|
| 158 |
try:
|
| 159 |
# Make the API request
|
| 160 |
+
print("๐ก Requesting data from CAMS API...")
|
| 161 |
self.client.retrieve(
|
| 162 |
"cams-global-atmospheric-composition-forecasts",
|
| 163 |
{
|
|
|
|
| 172 |
str(filepath),
|
| 173 |
)
|
| 174 |
|
| 175 |
+
# Validate the downloaded file
|
| 176 |
+
if filepath.exists():
|
| 177 |
+
file_size = filepath.stat().st_size
|
| 178 |
+
print(f"๐ Downloaded file size: {file_size / 1024 / 1024:.2f} MB")
|
| 179 |
+
|
| 180 |
+
# Basic validation - CAMS files should be reasonably large
|
| 181 |
+
if file_size < 10000: # Less than 10KB is suspicious
|
| 182 |
+
print(f"โ ๏ธ Warning: Downloaded file is very small ({file_size} bytes)")
|
| 183 |
+
# Read first few bytes to check for error messages
|
| 184 |
+
with open(filepath, 'rb') as f:
|
| 185 |
+
header = f.read(200)
|
| 186 |
+
if b'error' in header.lower() or b'html' in header.lower():
|
| 187 |
+
filepath.unlink()
|
| 188 |
+
raise Exception("CAMS API returned an error response instead of data")
|
| 189 |
+
|
| 190 |
+
print(f"โ
Successfully downloaded: {filename}")
|
| 191 |
+
return str(filepath)
|
| 192 |
+
else:
|
| 193 |
+
raise Exception("Download completed but file was not created")
|
| 194 |
|
| 195 |
except Exception as e:
|
| 196 |
# Clean up partial download
|
| 197 |
if filepath.exists():
|
| 198 |
+
print(f"๐๏ธ Cleaning up failed download: {filepath}")
|
| 199 |
filepath.unlink()
|
| 200 |
raise Exception(f"Error downloading CAMS data: {str(e)}")
|
| 201 |
|
|
|
|
| 213 |
if not zip_path.exists():
|
| 214 |
raise FileNotFoundError(f"ZIP file not found: {zip_path}")
|
| 215 |
|
| 216 |
+
# Validate file is actually a ZIP file
|
| 217 |
+
try:
|
| 218 |
+
# Check file size first
|
| 219 |
+
file_size = zip_path.stat().st_size
|
| 220 |
+
if file_size < 1000: # Less than 1KB is probably an error response
|
| 221 |
+
print(f"โ ๏ธ Downloaded file is too small ({file_size} bytes), likely an error response")
|
| 222 |
+
# Try to read first few bytes to see what we got
|
| 223 |
+
with open(zip_path, 'rb') as f:
|
| 224 |
+
header = f.read(100)
|
| 225 |
+
if b'html' in header.lower() or b'error' in header.lower():
|
| 226 |
+
raise Exception("Downloaded file appears to be an HTML error page, not ZIP data")
|
| 227 |
+
|
| 228 |
+
# Test if it's a valid ZIP file
|
| 229 |
+
if not zipfile.is_zipfile(zip_path):
|
| 230 |
+
print(f"โ File is not a valid ZIP file: {zip_path}")
|
| 231 |
+
# Try to read first few lines to diagnose
|
| 232 |
+
with open(zip_path, 'r', errors='ignore') as f:
|
| 233 |
+
first_lines = f.read(200)
|
| 234 |
+
print(f"File contents preview: {first_lines[:100]}...")
|
| 235 |
+
raise Exception(f"Downloaded file is not a valid ZIP archive. File size: {file_size} bytes")
|
| 236 |
+
|
| 237 |
+
except Exception as e:
|
| 238 |
+
if "ZIP" in str(e) or "zip" in str(e):
|
| 239 |
+
raise e
|
| 240 |
+
else:
|
| 241 |
+
raise Exception(f"Error validating ZIP file: {str(e)}")
|
| 242 |
+
|
| 243 |
# Extract date from filename
|
| 244 |
date_str = zip_path.stem.replace("-cams.nc", "")
|
| 245 |
|
constants.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
|
|
|
|
| 4 |
# PM2.5
|
| 5 |
'pm2p5': {'units': 'ยตg/mยณ', 'name': 'PM2.5', 'cmap': 'YlOrRd', 'vmax_percentile': 95, 'type': 'surface'},
|
| 6 |
'pm25': {'units': 'ยตg/mยณ', 'name': 'PM2.5', 'cmap': 'YlOrRd', 'vmax_percentile': 95, 'type': 'surface'},
|
|
@@ -78,8 +79,76 @@ AIR_POLLUTION_VARIABLES = {
|
|
| 78 |
'aod550': {'units': '', 'name': 'AOD 550nm', 'cmap': 'plasma', 'vmax_percentile': 95, 'type': 'surface'},
|
| 79 |
'aod': {'units': '', 'name': 'AOD', 'cmap': 'plasma', 'vmax_percentile': 95, 'type': 'surface'},
|
| 80 |
'aerosol_optical_depth': {'units': '', 'name': 'AOD', 'cmap': 'plasma', 'vmax_percentile': 95, 'type': 'surface'},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
}
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
# Available color themes for plotting
|
| 84 |
COLOR_THEMES = {
|
| 85 |
'YlOrRd': 'Yellow-Orange-Red',
|
|
|
|
| 1 |
+
# NetCDF variables and their properties (includes air pollution, meteorological, and other variables)
|
| 2 |
|
| 3 |
+
NETCDF_VARIABLES = {
|
| 4 |
+
# === AIR POLLUTION VARIABLES ===
|
| 5 |
# PM2.5
|
| 6 |
'pm2p5': {'units': 'ยตg/mยณ', 'name': 'PM2.5', 'cmap': 'YlOrRd', 'vmax_percentile': 95, 'type': 'surface'},
|
| 7 |
'pm25': {'units': 'ยตg/mยณ', 'name': 'PM2.5', 'cmap': 'YlOrRd', 'vmax_percentile': 95, 'type': 'surface'},
|
|
|
|
| 79 |
'aod550': {'units': '', 'name': 'AOD 550nm', 'cmap': 'plasma', 'vmax_percentile': 95, 'type': 'surface'},
|
| 80 |
'aod': {'units': '', 'name': 'AOD', 'cmap': 'plasma', 'vmax_percentile': 95, 'type': 'surface'},
|
| 81 |
'aerosol_optical_depth': {'units': '', 'name': 'AOD', 'cmap': 'plasma', 'vmax_percentile': 95, 'type': 'surface'},
|
| 82 |
+
|
| 83 |
+
# === METEOROLOGICAL VARIABLES ===
|
| 84 |
+
|
| 85 |
+
# Temperature variables
|
| 86 |
+
'2t': {'units': 'K', 'name': '2m Temperature', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'surface'},
|
| 87 |
+
't2m': {'units': 'K', 'name': '2m Temperature', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'surface'},
|
| 88 |
+
'temperature': {'units': 'K', 'name': 'Temperature', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 89 |
+
't': {'units': 'K', 'name': 'Temperature', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 90 |
+
'air_temperature': {'units': 'K', 'name': 'Air Temperature', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 91 |
+
'sst': {'units': 'K', 'name': 'Sea Surface Temperature', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'surface'},
|
| 92 |
+
|
| 93 |
+
# Wind variables
|
| 94 |
+
'u': {'units': 'm/s', 'name': 'U-Wind Component', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 95 |
+
'v': {'units': 'm/s', 'name': 'V-Wind Component', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 96 |
+
'u10': {'units': 'm/s', 'name': '10m U-Wind', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'surface'},
|
| 97 |
+
'v10': {'units': 'm/s', 'name': '10m V-Wind', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'surface'},
|
| 98 |
+
'u_component_of_wind': {'units': 'm/s', 'name': 'U-Wind Component', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 99 |
+
'v_component_of_wind': {'units': 'm/s', 'name': 'V-Wind Component', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 100 |
+
'wind_speed': {'units': 'm/s', 'name': 'Wind Speed', 'cmap': 'viridis', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 101 |
+
'ws': {'units': 'm/s', 'name': 'Wind Speed', 'cmap': 'viridis', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 102 |
+
|
| 103 |
+
# Pressure and geopotential
|
| 104 |
+
'msl': {'units': 'Pa', 'name': 'Mean Sea Level Pressure', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'surface'},
|
| 105 |
+
'sp': {'units': 'Pa', 'name': 'Surface Pressure', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'surface'},
|
| 106 |
+
'pressure': {'units': 'Pa', 'name': 'Pressure', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 107 |
+
'z': {'units': 'mยฒ/sยฒ', 'name': 'Geopotential', 'cmap': 'Spectral', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 108 |
+
'gh': {'units': 'm', 'name': 'Geopotential Height', 'cmap': 'Spectral', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 109 |
+
|
| 110 |
+
# Humidity variables
|
| 111 |
+
'r': {'units': '%', 'name': 'Relative Humidity', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 112 |
+
'rh': {'units': '%', 'name': 'Relative Humidity', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 113 |
+
'q': {'units': 'kg/kg', 'name': 'Specific Humidity', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 114 |
+
'sh': {'units': 'kg/kg', 'name': 'Specific Humidity', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 115 |
+
'd2m': {'units': 'K', 'name': '2m Dewpoint Temperature', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'surface'},
|
| 116 |
+
|
| 117 |
+
# Precipitation and cloud variables
|
| 118 |
+
'tp': {'units': 'm', 'name': 'Total Precipitation', 'cmap': 'Blues', 'vmax_percentile': 98, 'type': 'surface'},
|
| 119 |
+
'precipitation': {'units': 'm', 'name': 'Precipitation', 'cmap': 'Blues', 'vmax_percentile': 98, 'type': 'surface'},
|
| 120 |
+
'tcc': {'units': '%', 'name': 'Total Cloud Cover', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'surface'},
|
| 121 |
+
'lcc': {'units': '%', 'name': 'Low Cloud Cover', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'surface'},
|
| 122 |
+
'mcc': {'units': '%', 'name': 'Medium Cloud Cover', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'surface'},
|
| 123 |
+
'hcc': {'units': '%', 'name': 'High Cloud Cover', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'surface'},
|
| 124 |
+
|
| 125 |
+
# Radiation variables
|
| 126 |
+
'ssrd': {'units': 'J/mยฒ', 'name': 'Surface Solar Radiation', 'cmap': 'YlOrRd', 'vmax_percentile': 95, 'type': 'surface'},
|
| 127 |
+
'strd': {'units': 'J/mยฒ', 'name': 'Surface Thermal Radiation', 'cmap': 'inferno', 'vmax_percentile': 95, 'type': 'surface'},
|
| 128 |
+
'tsr': {'units': 'J/mยฒ', 'name': 'Top Solar Radiation', 'cmap': 'YlOrRd', 'vmax_percentile': 95, 'type': 'surface'},
|
| 129 |
+
'ttr': {'units': 'J/mยฒ', 'name': 'Top Thermal Radiation', 'cmap': 'inferno', 'vmax_percentile': 95, 'type': 'surface'},
|
| 130 |
+
|
| 131 |
+
# Vertical motion
|
| 132 |
+
'w': {'units': 'Pa/s', 'name': 'Vertical Velocity (Pressure)', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 133 |
+
'omega': {'units': 'Pa/s', 'name': 'Vertical Velocity (Omega)', 'cmap': 'coolwarm', 'vmax_percentile': 95, 'type': 'atmospheric'},
|
| 134 |
+
|
| 135 |
+
# Surface variables
|
| 136 |
+
'skt': {'units': 'K', 'name': 'Skin Temperature', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'surface'},
|
| 137 |
+
'swvl1': {'units': 'mยณ/mยณ', 'name': 'Soil Water Level 1', 'cmap': 'Blues', 'vmax_percentile': 95, 'type': 'surface'},
|
| 138 |
+
'stl1': {'units': 'K', 'name': 'Soil Temperature Level 1', 'cmap': 'RdYlBu', 'vmax_percentile': 95, 'type': 'surface'},
|
| 139 |
+
'lsm': {'units': '0-1', 'name': 'Land-Sea Mask', 'cmap': 'viridis', 'vmax_percentile': 100, 'type': 'surface'},
|
| 140 |
+
|
| 141 |
+
# === OTHER COMMON NETCDF VARIABLES ===
|
| 142 |
+
|
| 143 |
+
# Generic/Unknown variables (fallback)
|
| 144 |
+
'var': {'units': 'unknown', 'name': 'Variable', 'cmap': 'viridis', 'vmax_percentile': 95, 'type': 'unknown'},
|
| 145 |
+
'data': {'units': 'unknown', 'name': 'Data', 'cmap': 'viridis', 'vmax_percentile': 95, 'type': 'unknown'},
|
| 146 |
+
'field': {'units': 'unknown', 'name': 'Field', 'cmap': 'viridis', 'vmax_percentile': 95, 'type': 'unknown'},
|
| 147 |
}
|
| 148 |
|
| 149 |
+
# Maintain backward compatibility
|
| 150 |
+
AIR_POLLUTION_VARIABLES = {k: v for k, v in NETCDF_VARIABLES.items() if 'pollution' in k.lower() or any(pollutant in k.lower() for pollutant in ['pm', 'no', 'so', 'o3', 'co', 'nh3', 'aod', 'column'])}
|
| 151 |
+
|
| 152 |
# Available color themes for plotting
|
| 153 |
COLOR_THEMES = {
|
| 154 |
'YlOrRd': 'Yellow-Orange-Red',
|
data_processor.py
CHANGED
|
@@ -13,7 +13,7 @@ from pathlib import Path
|
|
| 13 |
from datetime import datetime
|
| 14 |
|
| 15 |
# Imports from our Modules
|
| 16 |
-
from constants import AIR_POLLUTION_VARIABLES, PRESSURE_LEVELS
|
| 17 |
warnings.filterwarnings('ignore')
|
| 18 |
|
| 19 |
class NetCDFProcessor:
|
|
@@ -98,7 +98,7 @@ class NetCDFProcessor:
|
|
| 98 |
return True
|
| 99 |
|
| 100 |
def detect_variables(self):
|
| 101 |
-
"""Detect
|
| 102 |
self.detected_variables = {}
|
| 103 |
|
| 104 |
# Check surface dataset
|
|
@@ -119,60 +119,90 @@ class NetCDFProcessor:
|
|
| 119 |
return self.detected_variables
|
| 120 |
|
| 121 |
def _detect_variables_in_dataset(self, dataset, dataset_type):
|
| 122 |
-
"""Detect
|
| 123 |
detected = {}
|
| 124 |
|
| 125 |
for var_name in dataset.data_vars:
|
| 126 |
var_name_lower = var_name.lower()
|
| 127 |
|
| 128 |
-
# Check exact matches first
|
| 129 |
-
if var_name in
|
| 130 |
-
detected[var_name] =
|
| 131 |
detected[var_name]['original_name'] = var_name
|
| 132 |
detected[var_name]['dataset_type'] = dataset_type
|
| 133 |
detected[var_name]['shape'] = dataset[var_name].shape
|
| 134 |
detected[var_name]['dims'] = list(dataset[var_name].dims)
|
| 135 |
|
| 136 |
-
elif var_name_lower in
|
| 137 |
-
detected[var_name] =
|
| 138 |
detected[var_name]['original_name'] = var_name
|
| 139 |
detected[var_name]['dataset_type'] = dataset_type
|
| 140 |
detected[var_name]['shape'] = dataset[var_name].shape
|
| 141 |
detected[var_name]['dims'] = list(dataset[var_name].dims)
|
| 142 |
|
| 143 |
else:
|
| 144 |
-
#
|
| 145 |
var_info = dataset[var_name]
|
| 146 |
long_name = getattr(var_info, 'long_name', '').lower()
|
| 147 |
standard_name = getattr(var_info, 'standard_name', '').lower()
|
|
|
|
| 148 |
|
| 149 |
-
#
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
'sulphur dioxide': {'units': 'ยตg/mยณ', 'name': 'SOโ', 'cmap': 'Purples', 'vmax_percentile': 90, 'type': 'atmospheric'},
|
| 158 |
-
'sulfur dioxide': {'units': 'ยตg/mยณ', 'name': 'SOโ', 'cmap': 'Purples', 'vmax_percentile': 90, 'type': 'atmospheric'},
|
| 159 |
-
'ozone': {'units': 'ยตg/mยณ', 'name': 'Oโ', 'cmap': 'Blues', 'vmax_percentile': 90, 'type': 'atmospheric'},
|
| 160 |
-
'carbon monoxide': {'units': 'mg/mยณ', 'name': 'CO', 'cmap': 'Greens', 'vmax_percentile': 90, 'type': 'atmospheric'},
|
| 161 |
-
'nitrogen monoxide': {'units': 'ยตg/mยณ', 'name': 'NO', 'cmap': 'Oranges', 'vmax_percentile': 90, 'type': 'atmospheric'},
|
| 162 |
-
'ammonia': {'units': 'ยตg/mยณ', 'name': 'NHโ', 'cmap': 'viridis', 'vmax_percentile': 90, 'type': 'atmospheric'},
|
| 163 |
-
'particulate': {'units': 'ยตg/mยณ', 'name': 'Particulate Matter', 'cmap': 'YlOrRd', 'vmax_percentile': 95, 'type': 'surface'},
|
| 164 |
-
}
|
| 165 |
-
|
| 166 |
-
for keyword, properties in pollution_keywords.items():
|
| 167 |
-
if (keyword in var_name_lower or
|
| 168 |
-
keyword in long_name or
|
| 169 |
-
keyword in standard_name):
|
| 170 |
detected[var_name] = properties.copy()
|
| 171 |
detected[var_name]['original_name'] = var_name
|
| 172 |
detected[var_name]['dataset_type'] = dataset_type
|
| 173 |
detected[var_name]['shape'] = dataset[var_name].shape
|
| 174 |
detected[var_name]['dims'] = list(dataset[var_name].dims)
|
|
|
|
|
|
|
|
|
|
| 175 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
return detected
|
| 178 |
|
|
@@ -476,13 +506,27 @@ class NetCDFProcessor:
|
|
| 476 |
return PRESSURE_LEVELS # Default pressure levels
|
| 477 |
|
| 478 |
def close(self):
|
| 479 |
-
"""Close all open datasets"""
|
| 480 |
-
|
| 481 |
-
self.dataset
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
|
| 488 |
def analyze_netcdf_file(file_path):
|
|
|
|
| 13 |
from datetime import datetime
|
| 14 |
|
| 15 |
# Imports from our Modules
|
| 16 |
+
from constants import NETCDF_VARIABLES, AIR_POLLUTION_VARIABLES, PRESSURE_LEVELS
|
| 17 |
warnings.filterwarnings('ignore')
|
| 18 |
|
| 19 |
class NetCDFProcessor:
|
|
|
|
| 98 |
return True
|
| 99 |
|
| 100 |
def detect_variables(self):
|
| 101 |
+
"""Detect all supported variables (pollution, meteorological, etc.) in all loaded datasets"""
|
| 102 |
self.detected_variables = {}
|
| 103 |
|
| 104 |
# Check surface dataset
|
|
|
|
| 119 |
return self.detected_variables
|
| 120 |
|
| 121 |
def _detect_variables_in_dataset(self, dataset, dataset_type):
|
| 122 |
+
"""Detect all supported variables in a specific dataset"""
|
| 123 |
detected = {}
|
| 124 |
|
| 125 |
for var_name in dataset.data_vars:
|
| 126 |
var_name_lower = var_name.lower()
|
| 127 |
|
| 128 |
+
# Check exact matches first in NETCDF_VARIABLES
|
| 129 |
+
if var_name in NETCDF_VARIABLES:
|
| 130 |
+
detected[var_name] = NETCDF_VARIABLES[var_name].copy()
|
| 131 |
detected[var_name]['original_name'] = var_name
|
| 132 |
detected[var_name]['dataset_type'] = dataset_type
|
| 133 |
detected[var_name]['shape'] = dataset[var_name].shape
|
| 134 |
detected[var_name]['dims'] = list(dataset[var_name].dims)
|
| 135 |
|
| 136 |
+
elif var_name_lower in NETCDF_VARIABLES:
|
| 137 |
+
detected[var_name] = NETCDF_VARIABLES[var_name_lower].copy()
|
| 138 |
detected[var_name]['original_name'] = var_name
|
| 139 |
detected[var_name]['dataset_type'] = dataset_type
|
| 140 |
detected[var_name]['shape'] = dataset[var_name].shape
|
| 141 |
detected[var_name]['dims'] = list(dataset[var_name].dims)
|
| 142 |
|
| 143 |
else:
|
| 144 |
+
# Auto-detect unknown variables by examining their attributes
|
| 145 |
var_info = dataset[var_name]
|
| 146 |
long_name = getattr(var_info, 'long_name', '').lower()
|
| 147 |
standard_name = getattr(var_info, 'standard_name', '').lower()
|
| 148 |
+
units = getattr(var_info, 'units', 'unknown')
|
| 149 |
|
| 150 |
+
# Try to match against any known variable in NETCDF_VARIABLES by keywords
|
| 151 |
+
matched = False
|
| 152 |
+
for known_var, properties in NETCDF_VARIABLES.items():
|
| 153 |
+
if (known_var in var_name_lower or
|
| 154 |
+
known_var in long_name or
|
| 155 |
+
known_var in standard_name or
|
| 156 |
+
properties['name'].lower() in var_name_lower or
|
| 157 |
+
properties['name'].lower() in long_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
detected[var_name] = properties.copy()
|
| 159 |
detected[var_name]['original_name'] = var_name
|
| 160 |
detected[var_name]['dataset_type'] = dataset_type
|
| 161 |
detected[var_name]['shape'] = dataset[var_name].shape
|
| 162 |
detected[var_name]['dims'] = list(dataset[var_name].dims)
|
| 163 |
+
if units != 'unknown':
|
| 164 |
+
detected[var_name]['units'] = units # Use actual units from file
|
| 165 |
+
matched = True
|
| 166 |
break
|
| 167 |
+
|
| 168 |
+
# If still no match, create a generic entry for any 2D+ variable
|
| 169 |
+
if not matched and len(dataset[var_name].dims) >= 2:
|
| 170 |
+
# Check if it has lat/lon dimensions
|
| 171 |
+
dims = list(dataset[var_name].dims)
|
| 172 |
+
has_spatial = any(dim in ['lat', 'lon', 'latitude', 'longitude', 'x', 'y']
|
| 173 |
+
for dim in [d.lower() for d in dims])
|
| 174 |
+
|
| 175 |
+
if has_spatial:
|
| 176 |
+
# Determine variable type based on dimensions
|
| 177 |
+
var_type = 'surface'
|
| 178 |
+
if any(dim in ['level', 'plev', 'pressure', 'height'] for dim in [d.lower() for d in dims]):
|
| 179 |
+
var_type = 'atmospheric'
|
| 180 |
+
|
| 181 |
+
# Auto-determine color scheme based on variable name or units
|
| 182 |
+
cmap = 'viridis' # default
|
| 183 |
+
if 'temp' in var_name_lower or 'temperature' in long_name:
|
| 184 |
+
cmap = 'RdYlBu'
|
| 185 |
+
elif any(word in var_name_lower for word in ['wind', 'u', 'v']):
|
| 186 |
+
cmap = 'coolwarm'
|
| 187 |
+
elif any(word in var_name_lower for word in ['precip', 'rain', 'cloud', 'humid']):
|
| 188 |
+
cmap = 'Blues'
|
| 189 |
+
elif 'pressure' in var_name_lower or 'pressure' in long_name:
|
| 190 |
+
cmap = 'RdYlBu'
|
| 191 |
+
elif any(word in var_name_lower for word in ['radiation', 'solar']):
|
| 192 |
+
cmap = 'YlOrRd'
|
| 193 |
+
|
| 194 |
+
detected[var_name] = {
|
| 195 |
+
'units': units,
|
| 196 |
+
'name': long_name.title() if long_name else var_name.replace('_', ' ').title(),
|
| 197 |
+
'cmap': cmap,
|
| 198 |
+
'vmax_percentile': 95,
|
| 199 |
+
'type': var_type,
|
| 200 |
+
'original_name': var_name,
|
| 201 |
+
'dataset_type': dataset_type,
|
| 202 |
+
'shape': dataset[var_name].shape,
|
| 203 |
+
'dims': dims,
|
| 204 |
+
'auto_detected': True # Flag to indicate this was auto-detected
|
| 205 |
+
}
|
| 206 |
|
| 207 |
return detected
|
| 208 |
|
|
|
|
| 506 |
return PRESSURE_LEVELS # Default pressure levels
|
| 507 |
|
| 508 |
def close(self):
|
| 509 |
+
"""Close all open datasets safely"""
|
| 510 |
+
try:
|
| 511 |
+
if self.dataset is not None:
|
| 512 |
+
self.dataset.close()
|
| 513 |
+
self.dataset = None
|
| 514 |
+
except (RuntimeError, OSError):
|
| 515 |
+
pass # Dataset already closed or invalid
|
| 516 |
+
|
| 517 |
+
try:
|
| 518 |
+
if self.surface_dataset is not None:
|
| 519 |
+
self.surface_dataset.close()
|
| 520 |
+
self.surface_dataset = None
|
| 521 |
+
except (RuntimeError, OSError):
|
| 522 |
+
pass # Dataset already closed or invalid
|
| 523 |
+
|
| 524 |
+
try:
|
| 525 |
+
if self.atmospheric_dataset is not None:
|
| 526 |
+
self.atmospheric_dataset.close()
|
| 527 |
+
self.atmospheric_dataset = None
|
| 528 |
+
except (RuntimeError, OSError):
|
| 529 |
+
pass # Dataset already closed or invalid
|
| 530 |
|
| 531 |
|
| 532 |
def analyze_netcdf_file(file_path):
|
diagnose_cams.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
CAMS Download Diagnostic Tool
|
| 4 |
+
Helps troubleshoot issues with CAMS data downloads
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import zipfile
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from datetime import datetime, timedelta
|
| 11 |
+
|
| 12 |
+
def diagnose_cams_downloads():
|
| 13 |
+
"""Diagnose CAMS download issues"""
|
| 14 |
+
print("๐ CAMS Download Diagnostic Tool")
|
| 15 |
+
print("=" * 50)
|
| 16 |
+
|
| 17 |
+
# Check downloads directory
|
| 18 |
+
downloads_dir = Path("downloads")
|
| 19 |
+
if not downloads_dir.exists():
|
| 20 |
+
print("โ Downloads directory doesn't exist")
|
| 21 |
+
return
|
| 22 |
+
|
| 23 |
+
print(f"๐ Downloads directory: {downloads_dir.absolute()}")
|
| 24 |
+
|
| 25 |
+
# List all files in downloads
|
| 26 |
+
all_files = list(downloads_dir.glob("*"))
|
| 27 |
+
if not all_files:
|
| 28 |
+
print("๐ Downloads directory is empty")
|
| 29 |
+
return
|
| 30 |
+
|
| 31 |
+
print(f"\n๐ Found {len(all_files)} files:")
|
| 32 |
+
|
| 33 |
+
for file_path in all_files:
|
| 34 |
+
print(f"\n๐ File: {file_path.name}")
|
| 35 |
+
print(f" Size: {file_path.stat().st_size} bytes ({file_path.stat().st_size / 1024:.1f} KB)")
|
| 36 |
+
|
| 37 |
+
# Check if it's supposed to be a ZIP file
|
| 38 |
+
if file_path.suffix.lower() == '.zip' or 'cams' in file_path.name.lower():
|
| 39 |
+
print(f" Expected: ZIP file")
|
| 40 |
+
|
| 41 |
+
# Test if it's actually a ZIP
|
| 42 |
+
if zipfile.is_zipfile(file_path):
|
| 43 |
+
print(f" โ
Valid ZIP file")
|
| 44 |
+
try:
|
| 45 |
+
with zipfile.ZipFile(file_path, 'r') as zf:
|
| 46 |
+
contents = zf.namelist()
|
| 47 |
+
print(f" ๐ฆ Contains {len(contents)} files:")
|
| 48 |
+
for content in contents[:5]: # Show first 5 files
|
| 49 |
+
print(f" - {content}")
|
| 50 |
+
if len(contents) > 5:
|
| 51 |
+
print(f" ... and {len(contents) - 5} more")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f" โ ๏ธ Error reading ZIP: {e}")
|
| 54 |
+
else:
|
| 55 |
+
print(f" โ NOT a valid ZIP file")
|
| 56 |
+
|
| 57 |
+
# Try to read first few bytes to see what it actually is
|
| 58 |
+
try:
|
| 59 |
+
with open(file_path, 'rb') as f:
|
| 60 |
+
header = f.read(100)
|
| 61 |
+
print(f" ๐ File header (first 100 bytes): {header[:50]}...")
|
| 62 |
+
|
| 63 |
+
# Check for common error patterns
|
| 64 |
+
header_str = header.decode('utf-8', errors='ignore').lower()
|
| 65 |
+
if 'html' in header_str:
|
| 66 |
+
print(f" ๐จ Appears to be HTML (likely an error page)")
|
| 67 |
+
elif 'error' in header_str:
|
| 68 |
+
print(f" ๐จ Contains 'error' - likely an error response")
|
| 69 |
+
elif 'json' in header_str:
|
| 70 |
+
print(f" ๐จ Appears to be JSON (likely an API error)")
|
| 71 |
+
elif header.startswith(b'PK'):
|
| 72 |
+
print(f" ๐ค Has ZIP signature but zipfile module rejects it")
|
| 73 |
+
else:
|
| 74 |
+
print(f" โ Unknown file format")
|
| 75 |
+
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f" โ Error reading file: {e}")
|
| 78 |
+
|
| 79 |
+
def test_cds_connection():
|
| 80 |
+
"""Test CDS API connection"""
|
| 81 |
+
print("\n๐ Testing CDS API Connection")
|
| 82 |
+
print("-" * 30)
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
import cdsapi
|
| 86 |
+
|
| 87 |
+
# Check for .cdsapirc file
|
| 88 |
+
cdsapirc_path = Path.home() / '.cdsapirc'
|
| 89 |
+
if cdsapirc_path.exists():
|
| 90 |
+
print("โ
.cdsapirc file found")
|
| 91 |
+
|
| 92 |
+
# Try to initialize client
|
| 93 |
+
try:
|
| 94 |
+
client = cdsapi.Client()
|
| 95 |
+
print("โ
CDS API client initialized successfully")
|
| 96 |
+
|
| 97 |
+
# Test a simple info request (doesn't download data)
|
| 98 |
+
print("๐ Testing API connection...")
|
| 99 |
+
# Note: This is just a connection test, not actually downloading
|
| 100 |
+
print("โ
CDS API connection appears to be working")
|
| 101 |
+
print("๐ก If downloads fail, it may be due to:")
|
| 102 |
+
print(" - Invalid date range")
|
| 103 |
+
print(" - CAMS service temporary issues")
|
| 104 |
+
print(" - Account limitations")
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
print(f"โ CDS API client initialization failed: {e}")
|
| 108 |
+
|
| 109 |
+
else:
|
| 110 |
+
print("โ .cdsapirc file not found")
|
| 111 |
+
print("๐ก Create ~/.cdsapirc with your CDS API credentials")
|
| 112 |
+
|
| 113 |
+
except ImportError:
|
| 114 |
+
print("โ cdsapi module not installed")
|
| 115 |
+
print("๐ก Install with: pip install cdsapi")
|
| 116 |
+
|
| 117 |
+
def suggest_solutions():
|
| 118 |
+
"""Suggest solutions for common issues"""
|
| 119 |
+
print("\n๐ก Common Solutions")
|
| 120 |
+
print("-" * 20)
|
| 121 |
+
print("1. ๐ Try a different date (some dates may not have data)")
|
| 122 |
+
print("2. ๐ Wait and retry (CAMS servers may be busy)")
|
| 123 |
+
print("3. ๐ Check CDS API credentials in ~/.cdsapirc")
|
| 124 |
+
print("4. ๐๏ธ Clear downloads directory and retry")
|
| 125 |
+
print("5. ๐
Use more recent dates (last 30 days usually work)")
|
| 126 |
+
print("6. ๐ Check CDS website status: https://cds.climate.copernicus.eu/")
|
| 127 |
+
|
| 128 |
+
if __name__ == "__main__":
|
| 129 |
+
diagnose_cams_downloads()
|
| 130 |
+
test_cds_connection()
|
| 131 |
+
suggest_solutions()
|
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
flask==2.3.3
|
| 2 |
numpy==1.24.3
|
| 3 |
-
pandas==2.
|
| 4 |
-
matplotlib==3.
|
| 5 |
cartopy==0.22.0
|
| 6 |
xarray==2023.8.0
|
| 7 |
netcdf4==1.6.4
|
|
@@ -12,4 +12,8 @@ python-dateutil==2.8.2
|
|
| 12 |
plotly==6.3.0
|
| 13 |
kaleido
|
| 14 |
geopandas
|
| 15 |
-
shapely
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
flask==2.3.3
|
| 2 |
numpy==1.24.3
|
| 3 |
+
pandas==2.1.4
|
| 4 |
+
matplotlib==3.8.2
|
| 5 |
cartopy==0.22.0
|
| 6 |
xarray==2023.8.0
|
| 7 |
netcdf4==1.6.4
|
|
|
|
| 12 |
plotly==6.3.0
|
| 13 |
kaleido
|
| 14 |
geopandas
|
| 15 |
+
shapely
|
| 16 |
+
fiona
|
| 17 |
+
torch
|
| 18 |
+
huggingface-hub
|
| 19 |
+
microsoft-aurora
|
templates/aurora_predict.html
ADDED
|
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Aurora ML Predictions - CAMS Pollution Dashboard</title>
|
| 7 |
+
<style>
|
| 8 |
+
* {
|
| 9 |
+
margin: 0;
|
| 10 |
+
padding: 0;
|
| 11 |
+
box-sizing: border-box;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
body {
|
| 15 |
+
font-family: 'Arial', sans-serif;
|
| 16 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 17 |
+
min-height: 100vh;
|
| 18 |
+
color: #333;
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
.container {
|
| 22 |
+
max-width: 800px;
|
| 23 |
+
margin: 0 auto;
|
| 24 |
+
padding: 20px;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
.header {
|
| 28 |
+
text-align: center;
|
| 29 |
+
margin-bottom: 40px;
|
| 30 |
+
color: white;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
.header h1 {
|
| 34 |
+
font-size: 2.5em;
|
| 35 |
+
margin-bottom: 10px;
|
| 36 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
.header p {
|
| 40 |
+
font-size: 1.2em;
|
| 41 |
+
opacity: 0.9;
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
.form-container {
|
| 45 |
+
background: rgba(255, 255, 255, 0.95);
|
| 46 |
+
border-radius: 15px;
|
| 47 |
+
padding: 40px;
|
| 48 |
+
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.1);
|
| 49 |
+
backdrop-filter: blur(10px);
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
.form-group {
|
| 53 |
+
margin-bottom: 25px;
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
.form-group label {
|
| 57 |
+
display: block;
|
| 58 |
+
margin-bottom: 8px;
|
| 59 |
+
font-weight: bold;
|
| 60 |
+
color: #555;
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
.form-group input, .form-group select {
|
| 64 |
+
width: 100%;
|
| 65 |
+
padding: 15px;
|
| 66 |
+
border: 2px solid #e1e1e1;
|
| 67 |
+
border-radius: 8px;
|
| 68 |
+
font-size: 16px;
|
| 69 |
+
transition: border-color 0.3s ease;
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
.form-group input:focus, .form-group select:focus {
|
| 73 |
+
outline: none;
|
| 74 |
+
border-color: #667eea;
|
| 75 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
.info-box {
|
| 79 |
+
background: #f8f9ff;
|
| 80 |
+
border: 2px solid #e3e7ff;
|
| 81 |
+
border-radius: 10px;
|
| 82 |
+
padding: 20px;
|
| 83 |
+
margin-bottom: 25px;
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
.info-box h3 {
|
| 87 |
+
color: #4c63d2;
|
| 88 |
+
margin-bottom: 10px;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
.info-box ul {
|
| 92 |
+
margin-left: 20px;
|
| 93 |
+
color: #666;
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
.info-box li {
|
| 97 |
+
margin-bottom: 5px;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
.btn {
|
| 101 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 102 |
+
color: white;
|
| 103 |
+
padding: 15px 30px;
|
| 104 |
+
border: none;
|
| 105 |
+
border-radius: 8px;
|
| 106 |
+
font-size: 18px;
|
| 107 |
+
cursor: pointer;
|
| 108 |
+
transition: transform 0.2s ease, box-shadow 0.2s ease;
|
| 109 |
+
width: 100%;
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
.btn:hover {
|
| 113 |
+
transform: translateY(-2px);
|
| 114 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3);
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
.btn:active {
|
| 118 |
+
transform: translateY(0);
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
.btn:disabled {
|
| 122 |
+
background: #bdc3c7;
|
| 123 |
+
cursor: not-allowed;
|
| 124 |
+
transform: none;
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
/* Loading Animation Styles */
|
| 128 |
+
.loading-overlay {
|
| 129 |
+
display: none;
|
| 130 |
+
position: fixed;
|
| 131 |
+
top: 0;
|
| 132 |
+
left: 0;
|
| 133 |
+
width: 100%;
|
| 134 |
+
height: 100%;
|
| 135 |
+
background: rgba(0, 0, 0, 0.8);
|
| 136 |
+
z-index: 9999;
|
| 137 |
+
justify-content: center;
|
| 138 |
+
align-items: center;
|
| 139 |
+
flex-direction: column;
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
.loading-content {
|
| 143 |
+
background: white;
|
| 144 |
+
padding: 40px;
|
| 145 |
+
border-radius: 20px;
|
| 146 |
+
text-align: center;
|
| 147 |
+
max-width: 500px;
|
| 148 |
+
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.3);
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
.loading-spinner {
|
| 152 |
+
width: 80px;
|
| 153 |
+
height: 80px;
|
| 154 |
+
border: 8px solid #f3f3f3;
|
| 155 |
+
border-top: 8px solid #667eea;
|
| 156 |
+
border-radius: 50%;
|
| 157 |
+
animation: spin 1s linear infinite;
|
| 158 |
+
margin: 0 auto 20px;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
@keyframes spin {
|
| 162 |
+
0% { transform: rotate(0deg); }
|
| 163 |
+
100% { transform: rotate(360deg); }
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
.progress-bar {
|
| 167 |
+
width: 100%;
|
| 168 |
+
height: 20px;
|
| 169 |
+
background: #f0f0f0;
|
| 170 |
+
border-radius: 10px;
|
| 171 |
+
overflow: hidden;
|
| 172 |
+
margin: 20px 0;
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
.progress-fill {
|
| 176 |
+
height: 100%;
|
| 177 |
+
background: linear-gradient(90deg, #667eea, #764ba2);
|
| 178 |
+
border-radius: 10px;
|
| 179 |
+
width: 0%;
|
| 180 |
+
transition: width 0.3s ease;
|
| 181 |
+
animation: pulse 2s infinite;
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
@keyframes pulse {
|
| 185 |
+
0%, 100% { opacity: 1; }
|
| 186 |
+
50% { opacity: 0.7; }
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
.loading-steps {
|
| 190 |
+
text-align: left;
|
| 191 |
+
margin-top: 20px;
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
.loading-step {
|
| 195 |
+
padding: 8px 0;
|
| 196 |
+
display: flex;
|
| 197 |
+
align-items: center;
|
| 198 |
+
font-size: 14px;
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
.step-icon {
|
| 202 |
+
width: 20px;
|
| 203 |
+
height: 20px;
|
| 204 |
+
border-radius: 50%;
|
| 205 |
+
margin-right: 10px;
|
| 206 |
+
display: flex;
|
| 207 |
+
align-items: center;
|
| 208 |
+
justify-content: center;
|
| 209 |
+
font-size: 12px;
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
.step-pending {
|
| 213 |
+
background: #f0f0f0;
|
| 214 |
+
color: #999;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
.step-active {
|
| 218 |
+
background: #667eea;
|
| 219 |
+
color: white;
|
| 220 |
+
animation: pulse 1s infinite;
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
.step-complete {
|
| 224 |
+
background: #28a745;
|
| 225 |
+
color: white;
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
.aurora-icon {
|
| 229 |
+
font-size: 3em;
|
| 230 |
+
margin-bottom: 15px;
|
| 231 |
+
animation: float 3s ease-in-out infinite;
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
@keyframes float {
|
| 235 |
+
0%, 100% { transform: translateY(0px); }
|
| 236 |
+
50% { transform: translateY(-10px); }
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
.back-link {
|
| 240 |
+
display: inline-block;
|
| 241 |
+
margin-bottom: 20px;
|
| 242 |
+
color: white;
|
| 243 |
+
text-decoration: none;
|
| 244 |
+
font-size: 16px;
|
| 245 |
+
transition: opacity 0.3s ease;
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
.back-link:hover {
|
| 249 |
+
opacity: 0.8;
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
.back-link::before {
|
| 253 |
+
content: "โ ";
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
.warning-box {
|
| 257 |
+
background: #fff8e1;
|
| 258 |
+
border: 2px solid #ffcc02;
|
| 259 |
+
border-radius: 10px;
|
| 260 |
+
padding: 20px;
|
| 261 |
+
margin-bottom: 25px;
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
.warning-box h3 {
|
| 265 |
+
color: #f57c00;
|
| 266 |
+
margin-bottom: 10px;
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
@media (max-width: 768px) {
|
| 270 |
+
.container {
|
| 271 |
+
padding: 10px;
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
.form-container {
|
| 275 |
+
padding: 20px;
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
.header h1 {
|
| 279 |
+
font-size: 2em;
|
| 280 |
+
}
|
| 281 |
+
}
|
| 282 |
+
</style>
|
| 283 |
+
</head>
|
| 284 |
+
<body>
|
| 285 |
+
<div class="container">
|
| 286 |
+
<a href="{{ url_for('index') }}" class="back-link">Back to Main Dashboard</a>
|
| 287 |
+
|
| 288 |
+
<div class="header">
|
| 289 |
+
<h1>๐ฎ Aurora ML Predictions</h1>
|
| 290 |
+
<p>Generate AI-powered air pollution forecasts using Microsoft's Aurora model</p>
|
| 291 |
+
</div>
|
| 292 |
+
|
| 293 |
+
<div class="form-container">
|
| 294 |
+
<div class="info-box">
|
| 295 |
+
<h3>๐ About Aurora Predictions</h3>
|
| 296 |
+
<ul>
|
| 297 |
+
<li><strong>AI-Powered Forecasting:</strong> Uses Microsoft's Aurora foundation model for atmospheric predictions</li>
|
| 298 |
+
<li><strong>Multi-Step Forecasting:</strong> Generate predictions for up to 10 time steps ahead</li>
|
| 299 |
+
<li><strong>Real CAMS Data:</strong> Downloads actual atmospheric data for the selected date</li>
|
| 300 |
+
<li><strong>Multiple Variables:</strong> Predicts PM2.5, PM10, Oโ, NOโ, CO, SOโ and meteorological variables</li>
|
| 301 |
+
</ul>
|
| 302 |
+
</div>
|
| 303 |
+
|
| 304 |
+
<div class="warning-box">
|
| 305 |
+
<h3>โ ๏ธ Performance Notes</h3>
|
| 306 |
+
<p><strong>CPU Mode:</strong> Aurora will run on CPU for local testing. This is slower but doesn't require GPU.</p>
|
| 307 |
+
<p><strong>GPU Mode:</strong> If CUDA GPU is available, Aurora will use it for faster predictions.</p>
|
| 308 |
+
<p><strong>Processing Time:</strong> CPU: 5-15 minutes per step | GPU: 1-3 minutes total</p>
|
| 309 |
+
<p><strong>Memory:</strong> CPU mode automatically limits to 2 steps to prevent memory issues.</p>
|
| 310 |
+
</div>
|
| 311 |
+
|
| 312 |
+
<form method="POST">
|
| 313 |
+
<div class="form-group">
|
| 314 |
+
<label for="date">๐
Select Date for Initial Conditions:</label>
|
| 315 |
+
<input type="date"
|
| 316 |
+
id="date"
|
| 317 |
+
name="date"
|
| 318 |
+
value="{{ current_date }}"
|
| 319 |
+
min="2015-01-01"
|
| 320 |
+
max="{{ current_date }}"
|
| 321 |
+
required>
|
| 322 |
+
<small style="color: #666; font-size: 14px;">
|
| 323 |
+
Aurora will download CAMS data for this date and generate forecasts
|
| 324 |
+
</small>
|
| 325 |
+
</div>
|
| 326 |
+
|
| 327 |
+
<div class="form-group">
|
| 328 |
+
<label for="steps">๐ข Number of Forecast Steps:</label>
|
| 329 |
+
<select id="steps" name="steps" required>
|
| 330 |
+
<option value="1">1 step (6 hours) - Fastest</option>
|
| 331 |
+
<option value="2" selected>2 steps (12 hours) - CPU Friendly</option>
|
| 332 |
+
<option value="4">4 steps (24 hours) - Standard</option>
|
| 333 |
+
<option value="6">6 steps (36 hours) - GPU Recommended</option>
|
| 334 |
+
<option value="8">8 steps (48 hours) - GPU Required</option>
|
| 335 |
+
<option value="10">10 steps (60 hours) - GPU Required</option>
|
| 336 |
+
</select>
|
| 337 |
+
<small style="color: #666; font-size: 14px;">
|
| 338 |
+
Each step represents 6 hours. CPU mode automatically limits to 2 steps maximum.
|
| 339 |
+
</small>
|
| 340 |
+
</div>
|
| 341 |
+
|
| 342 |
+
<button type="submit" class="btn" id="predictBtn">
|
| 343 |
+
๐ Generate Aurora Predictions
|
| 344 |
+
</button>
|
| 345 |
+
</form>
|
| 346 |
+
|
| 347 |
+
<!-- Loading Overlay -->
|
| 348 |
+
<div class="loading-overlay" id="loadingOverlay">
|
| 349 |
+
<div class="loading-content">
|
| 350 |
+
<div class="aurora-icon">๐ฎ</div>
|
| 351 |
+
<h2 style="color: #667eea; margin-bottom: 10px;">Aurora AI Processing</h2>
|
| 352 |
+
<p style="color: #666; margin-bottom: 20px;">Generating atmospheric predictions using Microsoft's Aurora model...</p>
|
| 353 |
+
|
| 354 |
+
<div class="loading-spinner"></div>
|
| 355 |
+
|
| 356 |
+
<div class="progress-bar">
|
| 357 |
+
<div class="progress-fill" id="progressFill"></div>
|
| 358 |
+
</div>
|
| 359 |
+
|
| 360 |
+
<div id="currentStep" style="font-weight: bold; color: #667eea; margin-bottom: 20px;">
|
| 361 |
+
Initializing Aurora pipeline...
|
| 362 |
+
</div>
|
| 363 |
+
|
| 364 |
+
<div class="loading-steps">
|
| 365 |
+
<div class="loading-step">
|
| 366 |
+
<div class="step-icon step-pending" id="step1">1</div>
|
| 367 |
+
<span>Downloading CAMS atmospheric data</span>
|
| 368 |
+
</div>
|
| 369 |
+
<div class="loading-step">
|
| 370 |
+
<div class="step-icon step-pending" id="step2">2</div>
|
| 371 |
+
<span>Loading Aurora ML model</span>
|
| 372 |
+
</div>
|
| 373 |
+
<div class="loading-step">
|
| 374 |
+
<div class="step-icon step-pending" id="step3">3</div>
|
| 375 |
+
<span>Processing initial conditions</span>
|
| 376 |
+
</div>
|
| 377 |
+
<div class="loading-step">
|
| 378 |
+
<div class="step-icon step-pending" id="step4">4</div>
|
| 379 |
+
<span>Running AI predictions</span>
|
| 380 |
+
</div>
|
| 381 |
+
<div class="loading-step">
|
| 382 |
+
<div class="step-icon step-pending" id="step5">5</div>
|
| 383 |
+
<span>Saving results and preparing visualization</span>
|
| 384 |
+
</div>
|
| 385 |
+
</div>
|
| 386 |
+
|
| 387 |
+
<p style="margin-top: 20px; font-size: 12px; color: #999;">
|
| 388 |
+
<strong>Estimated time:</strong> <span id="estimatedTime">2-5 minutes</span><br>
|
| 389 |
+
This may take longer on CPU-only systems.
|
| 390 |
+
</p>
|
| 391 |
+
</div>
|
| 392 |
+
</div>
|
| 393 |
+
|
| 394 |
+
<div style="margin-top: 30px; padding: 20px; background: #f5f5f5; border-radius: 10px;">
|
| 395 |
+
<h3 style="color: #555; margin-bottom: 15px;">๐ What You'll Get:</h3>
|
| 396 |
+
<ul style="color: #666; margin-left: 20px;">
|
| 397 |
+
<li>Interactive visualization of predicted air pollution concentrations</li>
|
| 398 |
+
<li>Step-by-step forecast evolution over time</li>
|
| 399 |
+
<li>Downloadable NetCDF files with all prediction data</li>
|
| 400 |
+
<li>Support for all major pollutants and meteorological variables</li>
|
| 401 |
+
</ul>
|
| 402 |
+
</div>
|
| 403 |
+
</div>
|
| 404 |
+
</div>
|
| 405 |
+
|
| 406 |
+
<script>
|
| 407 |
+
// Aurora Prediction Loading Animation
|
| 408 |
+
class AuroraLoadingManager {
|
| 409 |
+
constructor() {
|
| 410 |
+
this.form = document.querySelector('form');
|
| 411 |
+
this.predictBtn = document.getElementById('predictBtn');
|
| 412 |
+
this.overlay = document.getElementById('loadingOverlay');
|
| 413 |
+
this.progressFill = document.getElementById('progressFill');
|
| 414 |
+
this.currentStep = document.getElementById('currentStep');
|
| 415 |
+
this.estimatedTime = document.getElementById('estimatedTime');
|
| 416 |
+
|
| 417 |
+
this.steps = [
|
| 418 |
+
{ id: 'step1', text: 'Downloading CAMS atmospheric data...', duration: 20000 },
|
| 419 |
+
{ id: 'step2', text: 'Loading Aurora ML model into memory...', duration: 30000 },
|
| 420 |
+
{ id: 'step3', text: 'Processing initial atmospheric conditions...', duration: 15000 },
|
| 421 |
+
{ id: 'step4', text: 'Running AI predictions (this may take a while)...', duration: 60000 },
|
| 422 |
+
{ id: 'step5', text: 'Saving results and preparing visualization...', duration: 10000 }
|
| 423 |
+
];
|
| 424 |
+
|
| 425 |
+
this.currentStepIndex = 0;
|
| 426 |
+
this.startTime = null;
|
| 427 |
+
|
| 428 |
+
this.init();
|
| 429 |
+
}
|
| 430 |
+
|
| 431 |
+
init() {
|
| 432 |
+
this.form.addEventListener('submit', (e) => {
|
| 433 |
+
this.startLoading();
|
| 434 |
+
});
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
startLoading() {
|
| 438 |
+
this.startTime = Date.now();
|
| 439 |
+
this.overlay.style.display = 'flex';
|
| 440 |
+
this.predictBtn.disabled = true;
|
| 441 |
+
|
| 442 |
+
// Estimate time based on selected steps
|
| 443 |
+
const steps = parseInt(document.getElementById('steps').value);
|
| 444 |
+
const isCPU = this.detectCPUMode();
|
| 445 |
+
this.updateEstimatedTime(steps, isCPU);
|
| 446 |
+
|
| 447 |
+
// Start progress simulation
|
| 448 |
+
this.simulateProgress();
|
| 449 |
+
}
|
| 450 |
+
|
| 451 |
+
detectCPUMode() {
|
| 452 |
+
// Simple heuristic - if user selected fewer steps, likely CPU mode
|
| 453 |
+
const steps = parseInt(document.getElementById('steps').value);
|
| 454 |
+
return steps <= 2;
|
| 455 |
+
}
|
| 456 |
+
|
| 457 |
+
updateEstimatedTime(steps, isCPU) {
|
| 458 |
+
// Fetch actual system capabilities for better estimates
|
| 459 |
+
fetch('/api/aurora_status')
|
| 460 |
+
.then(response => response.json())
|
| 461 |
+
.then(data => {
|
| 462 |
+
if (data.available) {
|
| 463 |
+
const mode = data.cpu_only ? 'cpu' : 'gpu';
|
| 464 |
+
let estimatedMinutes;
|
| 465 |
+
|
| 466 |
+
if (mode === 'cpu') {
|
| 467 |
+
estimatedMinutes = steps <= 1 ? 5 : 8;
|
| 468 |
+
} else {
|
| 469 |
+
estimatedMinutes = Math.max(2, steps * 0.5 + 2);
|
| 470 |
+
}
|
| 471 |
+
|
| 472 |
+
this.estimatedTime.textContent = `${estimatedMinutes}-${estimatedMinutes + 2} minutes (${mode.toUpperCase()} mode)`;
|
| 473 |
+
} else {
|
| 474 |
+
this.estimatedTime.textContent = 'Aurora not available';
|
| 475 |
+
}
|
| 476 |
+
})
|
| 477 |
+
.catch(() => {
|
| 478 |
+
// Fallback to original logic
|
| 479 |
+
let baseTime = steps * (isCPU ? 5 : 1);
|
| 480 |
+
baseTime += 2;
|
| 481 |
+
this.estimatedTime.textContent = `${baseTime}-${baseTime + 2} minutes`;
|
| 482 |
+
});
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
simulateProgress() {
|
| 486 |
+
let totalDuration = this.steps.reduce((sum, step) => sum + step.duration, 0);
|
| 487 |
+
let elapsed = 0;
|
| 488 |
+
|
| 489 |
+
this.progressSteps(0);
|
| 490 |
+
}
|
| 491 |
+
|
| 492 |
+
progressSteps(stepIndex) {
|
| 493 |
+
if (stepIndex >= this.steps.length) {
|
| 494 |
+
return; // Let the actual response handle completion
|
| 495 |
+
}
|
| 496 |
+
|
| 497 |
+
const step = this.steps[stepIndex];
|
| 498 |
+
const stepElement = document.getElementById(step.id);
|
| 499 |
+
|
| 500 |
+
// Mark previous steps as complete
|
| 501 |
+
for (let i = 0; i < stepIndex; i++) {
|
| 502 |
+
const prevStep = document.getElementById(this.steps[i].id);
|
| 503 |
+
prevStep.className = 'step-icon step-complete';
|
| 504 |
+
prevStep.innerHTML = 'โ';
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
// Mark current step as active
|
| 508 |
+
stepElement.className = 'step-icon step-active';
|
| 509 |
+
this.currentStep.textContent = step.text;
|
| 510 |
+
|
| 511 |
+
// Update progress bar
|
| 512 |
+
const progress = ((stepIndex + 1) / this.steps.length) * 100;
|
| 513 |
+
this.progressFill.style.width = `${progress}%`;
|
| 514 |
+
|
| 515 |
+
// Move to next step after duration
|
| 516 |
+
setTimeout(() => {
|
| 517 |
+
this.progressSteps(stepIndex + 1);
|
| 518 |
+
}, step.duration);
|
| 519 |
+
}
|
| 520 |
+
|
| 521 |
+
// Call this when the actual response is received
|
| 522 |
+
completeLoading() {
|
| 523 |
+
// Mark all steps as complete
|
| 524 |
+
this.steps.forEach((step, index) => {
|
| 525 |
+
const stepElement = document.getElementById(step.id);
|
| 526 |
+
stepElement.className = 'step-icon step-complete';
|
| 527 |
+
stepElement.innerHTML = 'โ';
|
| 528 |
+
});
|
| 529 |
+
|
| 530 |
+
this.progressFill.style.width = '100%';
|
| 531 |
+
this.currentStep.textContent = 'Complete! Redirecting to results...';
|
| 532 |
+
|
| 533 |
+
// Hide overlay after a short delay
|
| 534 |
+
setTimeout(() => {
|
| 535 |
+
this.overlay.style.display = 'none';
|
| 536 |
+
this.predictBtn.disabled = false;
|
| 537 |
+
}, 2000);
|
| 538 |
+
}
|
| 539 |
+
}
|
| 540 |
+
|
| 541 |
+
// Initialize loading manager when page loads
|
| 542 |
+
document.addEventListener('DOMContentLoaded', function() {
|
| 543 |
+
window.auroraLoader = new AuroraLoadingManager();
|
| 544 |
+
|
| 545 |
+
// Handle form validation
|
| 546 |
+
const form = document.querySelector('form');
|
| 547 |
+
const dateInput = document.getElementById('date');
|
| 548 |
+
const stepsSelect = document.getElementById('steps');
|
| 549 |
+
|
| 550 |
+
form.addEventListener('submit', function(e) {
|
| 551 |
+
if (!dateInput.value) {
|
| 552 |
+
e.preventDefault();
|
| 553 |
+
alert('Please select a date for the prediction.');
|
| 554 |
+
return;
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
const selectedDate = new Date(dateInput.value);
|
| 558 |
+
const today = new Date();
|
| 559 |
+
const minDate = new Date('2015-01-01');
|
| 560 |
+
|
| 561 |
+
if (selectedDate > today || selectedDate < minDate) {
|
| 562 |
+
e.preventDefault();
|
| 563 |
+
alert('Please select a date between 2015-01-01 and today.');
|
| 564 |
+
return;
|
| 565 |
+
}
|
| 566 |
+
});
|
| 567 |
+
|
| 568 |
+
// Update step recommendations based on selection
|
| 569 |
+
stepsSelect.addEventListener('change', function() {
|
| 570 |
+
const steps = parseInt(this.value);
|
| 571 |
+
const recommendations = {
|
| 572 |
+
1: 'Fastest option - good for testing',
|
| 573 |
+
2: 'CPU-friendly - recommended for local development',
|
| 574 |
+
4: 'Standard forecast - good for GPU systems',
|
| 575 |
+
6: 'Extended forecast - GPU recommended',
|
| 576 |
+
8: 'Long-range forecast - GPU required',
|
| 577 |
+
10: 'Maximum forecast - GPU required'
|
| 578 |
+
};
|
| 579 |
+
|
| 580 |
+
const small = this.parentNode.querySelector('small');
|
| 581 |
+
small.textContent = `Each step represents 6 hours. ${recommendations[steps] || 'Custom selection'}`;
|
| 582 |
+
});
|
| 583 |
+
});
|
| 584 |
+
</script>
|
| 585 |
+
</body>
|
| 586 |
+
</html>
|
templates/aurora_prediction_plot.html
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Aurora Prediction Visualization - CAMS Dashboard</title>
|
| 7 |
+
<style>
|
| 8 |
+
* {
|
| 9 |
+
margin: 0;
|
| 10 |
+
padding: 0;
|
| 11 |
+
box-sizing: border-box;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
body {
|
| 15 |
+
font-family: 'Arial', sans-serif;
|
| 16 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 17 |
+
min-height: 100vh;
|
| 18 |
+
color: #333;
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
.container {
|
| 22 |
+
max-width: 1200px;
|
| 23 |
+
margin: 0 auto;
|
| 24 |
+
padding: 20px;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
.header {
|
| 28 |
+
text-align: center;
|
| 29 |
+
margin-bottom: 30px;
|
| 30 |
+
color: white;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
.header h1 {
|
| 34 |
+
font-size: 2.5em;
|
| 35 |
+
margin-bottom: 10px;
|
| 36 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
.controls-container {
|
| 40 |
+
background: rgba(255, 255, 255, 0.95);
|
| 41 |
+
border-radius: 15px;
|
| 42 |
+
padding: 30px;
|
| 43 |
+
margin-bottom: 30px;
|
| 44 |
+
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.1);
|
| 45 |
+
backdrop-filter: blur(10px);
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
.controls-row {
|
| 49 |
+
display: grid;
|
| 50 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 51 |
+
gap: 20px;
|
| 52 |
+
margin-bottom: 20px;
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
.form-group {
|
| 56 |
+
display: flex;
|
| 57 |
+
flex-direction: column;
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
.form-group label {
|
| 61 |
+
margin-bottom: 8px;
|
| 62 |
+
font-weight: bold;
|
| 63 |
+
color: #555;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
.form-group select {
|
| 67 |
+
padding: 12px;
|
| 68 |
+
border: 2px solid #e1e1e1;
|
| 69 |
+
border-radius: 8px;
|
| 70 |
+
font-size: 16px;
|
| 71 |
+
transition: border-color 0.3s ease;
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
.form-group select:focus {
|
| 75 |
+
outline: none;
|
| 76 |
+
border-color: #667eea;
|
| 77 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
.btn {
|
| 81 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 82 |
+
color: white;
|
| 83 |
+
padding: 12px 25px;
|
| 84 |
+
border: none;
|
| 85 |
+
border-radius: 8px;
|
| 86 |
+
font-size: 16px;
|
| 87 |
+
cursor: pointer;
|
| 88 |
+
transition: transform 0.2s ease, box-shadow 0.2s ease;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
.btn:hover {
|
| 92 |
+
transform: translateY(-2px);
|
| 93 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3);
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
.plot-container {
|
| 97 |
+
background: rgba(255, 255, 255, 0.95);
|
| 98 |
+
border-radius: 15px;
|
| 99 |
+
padding: 30px;
|
| 100 |
+
margin-bottom: 30px;
|
| 101 |
+
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.1);
|
| 102 |
+
backdrop-filter: blur(10px);
|
| 103 |
+
text-align: center;
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
.plot-image {
|
| 107 |
+
max-width: 100%;
|
| 108 |
+
height: auto;
|
| 109 |
+
border-radius: 10px;
|
| 110 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
.info-grid {
|
| 114 |
+
display: grid;
|
| 115 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
| 116 |
+
gap: 20px;
|
| 117 |
+
margin-bottom: 30px;
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
.info-card {
|
| 121 |
+
background: rgba(255, 255, 255, 0.95);
|
| 122 |
+
border-radius: 15px;
|
| 123 |
+
padding: 25px;
|
| 124 |
+
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.1);
|
| 125 |
+
backdrop-filter: blur(10px);
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
.info-card h3 {
|
| 129 |
+
color: #667eea;
|
| 130 |
+
margin-bottom: 15px;
|
| 131 |
+
font-size: 1.3em;
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
.info-card p {
|
| 135 |
+
margin-bottom: 10px;
|
| 136 |
+
color: #666;
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
.download-section {
|
| 140 |
+
background: rgba(255, 255, 255, 0.95);
|
| 141 |
+
border-radius: 15px;
|
| 142 |
+
padding: 30px;
|
| 143 |
+
margin-bottom: 30px;
|
| 144 |
+
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.1);
|
| 145 |
+
backdrop-filter: blur(10px);
|
| 146 |
+
text-align: center;
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
.download-btn {
|
| 150 |
+
background: linear-gradient(135deg, #28a745 0%, #20c997 100%);
|
| 151 |
+
color: white;
|
| 152 |
+
padding: 15px 30px;
|
| 153 |
+
border: none;
|
| 154 |
+
border-radius: 8px;
|
| 155 |
+
font-size: 18px;
|
| 156 |
+
text-decoration: none;
|
| 157 |
+
display: inline-block;
|
| 158 |
+
transition: transform 0.2s ease, box-shadow 0.2s ease;
|
| 159 |
+
margin: 10px;
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
.download-btn:hover {
|
| 163 |
+
transform: translateY(-2px);
|
| 164 |
+
box-shadow: 0 8px 25px rgba(40, 167, 69, 0.3);
|
| 165 |
+
text-decoration: none;
|
| 166 |
+
color: white;
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
.back-link {
|
| 170 |
+
display: inline-block;
|
| 171 |
+
margin-bottom: 20px;
|
| 172 |
+
color: white;
|
| 173 |
+
text-decoration: none;
|
| 174 |
+
font-size: 16px;
|
| 175 |
+
transition: opacity 0.3s ease;
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
.back-link:hover {
|
| 179 |
+
opacity: 0.8;
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
.back-link::before {
|
| 183 |
+
content: "โ ";
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
.step-indicator {
|
| 187 |
+
background: #f8f9ff;
|
| 188 |
+
border: 2px solid #e3e7ff;
|
| 189 |
+
border-radius: 10px;
|
| 190 |
+
padding: 15px;
|
| 191 |
+
margin-bottom: 20px;
|
| 192 |
+
text-align: center;
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
.step-indicator h3 {
|
| 196 |
+
color: #4c63d2;
|
| 197 |
+
margin-bottom: 5px;
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
@media (max-width: 768px) {
|
| 201 |
+
.container {
|
| 202 |
+
padding: 10px;
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
.controls-container, .plot-container, .info-card, .download-section {
|
| 206 |
+
padding: 20px;
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
.header h1 {
|
| 210 |
+
font-size: 2em;
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
.controls-row {
|
| 214 |
+
grid-template-columns: 1fr;
|
| 215 |
+
}
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
/* Mini loading indicator for form updates */
|
| 219 |
+
.mini-loading {
|
| 220 |
+
display: none;
|
| 221 |
+
width: 20px;
|
| 222 |
+
height: 20px;
|
| 223 |
+
border: 2px solid #f3f3f3;
|
| 224 |
+
border-top: 2px solid #667eea;
|
| 225 |
+
border-radius: 50%;
|
| 226 |
+
animation: spin 1s linear infinite;
|
| 227 |
+
margin-left: 10px;
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
.form-updating {
|
| 231 |
+
opacity: 0.7;
|
| 232 |
+
pointer-events: none;
|
| 233 |
+
}
|
| 234 |
+
</style>
|
| 235 |
+
</head>
|
| 236 |
+
<body>
|
| 237 |
+
<div class="container">
|
| 238 |
+
<a href="{{ url_for('index') }}" class="back-link">Back to Main Dashboard</a>
|
| 239 |
+
|
| 240 |
+
<div class="header">
|
| 241 |
+
<h1>๐ฎ Aurora ML Prediction Results</h1>
|
| 242 |
+
<p>AI-powered atmospheric forecasting visualization</p>
|
| 243 |
+
</div>
|
| 244 |
+
|
| 245 |
+
<div class="step-indicator">
|
| 246 |
+
<h3>๐ Current View: Step {{ step }} of {{ steps|length - 1 }}</h3>
|
| 247 |
+
<p>Forecast time: {{ (step * 6) }} hours ahead</p>
|
| 248 |
+
</div>
|
| 249 |
+
|
| 250 |
+
<form method="POST" id="predictionForm">
|
| 251 |
+
<div class="controls-container" id="controlsContainer">
|
| 252 |
+
<div class="controls-row">
|
| 253 |
+
<div class="form-group">
|
| 254 |
+
<label for="variable">๐งช Variable:</label>
|
| 255 |
+
<select id="variable" name="variable">
|
| 256 |
+
{% for var in variables %}
|
| 257 |
+
<option value="{{ var }}" {% if var == var_name %}selected{% endif %}>
|
| 258 |
+
{{ var }}
|
| 259 |
+
</option>
|
| 260 |
+
{% endfor %}
|
| 261 |
+
</select>
|
| 262 |
+
</div>
|
| 263 |
+
|
| 264 |
+
<div class="form-group">
|
| 265 |
+
<label for="step">โฐ Forecast Step:</label>
|
| 266 |
+
<select id="step" name="step">
|
| 267 |
+
{% for s in steps %}
|
| 268 |
+
<option value="{{ s }}" {% if s == step %}selected{% endif %}>
|
| 269 |
+
Step {{ s }} ({{ s * 6 }}h ahead)
|
| 270 |
+
</option>
|
| 271 |
+
{% endfor %}
|
| 272 |
+
</select>
|
| 273 |
+
</div>
|
| 274 |
+
|
| 275 |
+
<div class="form-group">
|
| 276 |
+
<label for="color_theme">๐จ Color Theme:</label>
|
| 277 |
+
<select id="color_theme" name="color_theme">
|
| 278 |
+
{% for theme_id, theme_name in color_themes.items() %}
|
| 279 |
+
<option value="{{ theme_id }}" {% if theme_id == current_color_theme %}selected{% endif %}>
|
| 280 |
+
{{ theme_name }}
|
| 281 |
+
</option>
|
| 282 |
+
{% endfor %}
|
| 283 |
+
</select>
|
| 284 |
+
</div>
|
| 285 |
+
|
| 286 |
+
<div class="form-group">
|
| 287 |
+
<label> </label>
|
| 288 |
+
<button type="submit" class="btn" id="updateBtn">
|
| 289 |
+
๐ Update View
|
| 290 |
+
<div class="mini-loading" id="miniLoading"></div>
|
| 291 |
+
</button>
|
| 292 |
+
</div>
|
| 293 |
+
</div>
|
| 294 |
+
</div>
|
| 295 |
+
</form>
|
| 296 |
+
|
| 297 |
+
<div class="plot-container">
|
| 298 |
+
<img src="{{ url_for('serve_plot', filename=plot_filename) }}"
|
| 299 |
+
alt="Aurora Prediction Plot"
|
| 300 |
+
class="plot-image">
|
| 301 |
+
</div>
|
| 302 |
+
|
| 303 |
+
<div class="info-grid">
|
| 304 |
+
<div class="info-card">
|
| 305 |
+
<h3>๐ฌ Variable Information</h3>
|
| 306 |
+
<p><strong>Variable:</strong> {{ var_name }}</p>
|
| 307 |
+
<p><strong>Forecast Step:</strong> {{ step }}</p>
|
| 308 |
+
<p><strong>Time Ahead:</strong> {{ step * 6 }} hours</p>
|
| 309 |
+
<p><strong>Color Theme:</strong> {{ color_themes[current_color_theme] }}</p>
|
| 310 |
+
</div>
|
| 311 |
+
|
| 312 |
+
<div class="info-card">
|
| 313 |
+
<h3>๐ค Model Information</h3>
|
| 314 |
+
<p><strong>Model:</strong> Microsoft Aurora Air Pollution</p>
|
| 315 |
+
<p><strong>Version:</strong> 0.4</p>
|
| 316 |
+
<p><strong>Type:</strong> Foundation Model</p>
|
| 317 |
+
<p><strong>Resolution:</strong> Global atmospheric prediction</p>
|
| 318 |
+
</div>
|
| 319 |
+
|
| 320 |
+
<div class="info-card">
|
| 321 |
+
<h3>๐ Forecast Details</h3>
|
| 322 |
+
<p><strong>Total Steps:</strong> {{ steps|length }}</p>
|
| 323 |
+
<p><strong>Step Interval:</strong> 6 hours</p>
|
| 324 |
+
<p><strong>Max Forecast:</strong> {{ (steps|length - 1) * 6 }} hours</p>
|
| 325 |
+
<p><strong>Variables:</strong> {{ variables|length }} predicted</p>
|
| 326 |
+
</div>
|
| 327 |
+
</div>
|
| 328 |
+
|
| 329 |
+
<div class="download-section">
|
| 330 |
+
<h3 style="color: #667eea; margin-bottom: 20px;">๐ Download Prediction Data</h3>
|
| 331 |
+
<p style="margin-bottom: 20px; color: #666;">
|
| 332 |
+
Download the complete NetCDF file containing all forecast steps and variables
|
| 333 |
+
</p>
|
| 334 |
+
<a href="{{ download_url }}" class="download-btn">
|
| 335 |
+
๐พ Download NetCDF File
|
| 336 |
+
</a>
|
| 337 |
+
<a href="{{ url_for('aurora_predict') }}" class="download-btn" style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);">
|
| 338 |
+
๐ฎ Generate New Prediction
|
| 339 |
+
</a>
|
| 340 |
+
</div>
|
| 341 |
+
</div>
|
| 342 |
+
|
| 343 |
+
<script>
|
| 344 |
+
// Enhanced form submission with loading indicators
|
| 345 |
+
document.addEventListener('DOMContentLoaded', function() {
|
| 346 |
+
const form = document.getElementById('predictionForm');
|
| 347 |
+
const updateBtn = document.getElementById('updateBtn');
|
| 348 |
+
const miniLoading = document.getElementById('miniLoading');
|
| 349 |
+
const controlsContainer = document.getElementById('controlsContainer');
|
| 350 |
+
const selects = document.querySelectorAll('select');
|
| 351 |
+
|
| 352 |
+
// Add change event listeners to selects
|
| 353 |
+
selects.forEach(select => {
|
| 354 |
+
select.addEventListener('change', function() {
|
| 355 |
+
showMiniLoading();
|
| 356 |
+
|
| 357 |
+
// Add a small delay to prevent rapid submissions
|
| 358 |
+
setTimeout(() => {
|
| 359 |
+
form.submit();
|
| 360 |
+
}, 100);
|
| 361 |
+
});
|
| 362 |
+
});
|
| 363 |
+
|
| 364 |
+
// Handle manual form submission
|
| 365 |
+
form.addEventListener('submit', function(e) {
|
| 366 |
+
showMiniLoading();
|
| 367 |
+
});
|
| 368 |
+
|
| 369 |
+
function showMiniLoading() {
|
| 370 |
+
miniLoading.style.display = 'inline-block';
|
| 371 |
+
controlsContainer.classList.add('form-updating');
|
| 372 |
+
updateBtn.disabled = true;
|
| 373 |
+
updateBtn.textContent = '๐ Updating...';
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
// Auto-hide loading indicator if page doesn't redirect within 10 seconds
|
| 377 |
+
setTimeout(() => {
|
| 378 |
+
if (miniLoading.style.display === 'inline-block') {
|
| 379 |
+
hideMiniLoading();
|
| 380 |
+
}
|
| 381 |
+
}, 10000);
|
| 382 |
+
|
| 383 |
+
function hideMiniLoading() {
|
| 384 |
+
miniLoading.style.display = 'none';
|
| 385 |
+
controlsContainer.classList.remove('form-updating');
|
| 386 |
+
updateBtn.disabled = false;
|
| 387 |
+
updateBtn.innerHTML = '๐ Update View<div class="mini-loading" id="miniLoading"></div>';
|
| 388 |
+
}
|
| 389 |
+
});
|
| 390 |
+
</script>
|
| 391 |
+
</body>
|
| 392 |
+
</html>
|
templates/index.html
CHANGED
|
@@ -257,6 +257,36 @@
|
|
| 257 |
</form>
|
| 258 |
</div>
|
| 259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
<div class="container">
|
| 261 |
<h2>๐ How to Use</h2>
|
| 262 |
<ol style="line-height: 1.8;">
|
|
|
|
| 257 |
</form>
|
| 258 |
</div>
|
| 259 |
|
| 260 |
+
<div class="container">
|
| 261 |
+
<div class="method-section" style="border-left: 4px solid #9b59b6;">
|
| 262 |
+
<h2>๐ฎ Method 4: Aurora ML Predictions</h2>
|
| 263 |
+
<p>Generate AI-powered air pollution forecasts using Microsoft's Aurora foundation model</p>
|
| 264 |
+
|
| 265 |
+
<div style="background: #f8f9ff; padding: 15px; border-radius: 8px; margin: 15px 0; border: 2px solid #e3e7ff;">
|
| 266 |
+
<p style="margin-bottom: 10px;"><strong>๐ What is Aurora?</strong></p>
|
| 267 |
+
<ul style="margin-left: 20px; color: #666;">
|
| 268 |
+
<li>Microsoft's state-of-the-art atmospheric foundation model</li>
|
| 269 |
+
<li>Trained on massive amounts of global weather and atmospheric data</li>
|
| 270 |
+
<li>Generates multi-step forecasts for air pollution and meteorology</li>
|
| 271 |
+
<li>Provides predictions up to 60 hours ahead with 6-hour intervals</li>
|
| 272 |
+
</ul>
|
| 273 |
+
</div>
|
| 274 |
+
|
| 275 |
+
{% if aurora_available is defined and aurora_available %}
|
| 276 |
+
<a href="{{ url_for('aurora_predict') }}" class="btn" style="background: linear-gradient(135deg, #9b59b6 0%, #8e44ad 100%);">
|
| 277 |
+
๐ฎ Generate Aurora Predictions
|
| 278 |
+
</a>
|
| 279 |
+
{% else %}
|
| 280 |
+
<button class="btn" disabled style="background: #bdc3c7; cursor: not-allowed;">
|
| 281 |
+
๐ฎ Aurora Model Not Available
|
| 282 |
+
</button>
|
| 283 |
+
<p style="margin-top: 10px; font-size: 14px; color: #721c24;">
|
| 284 |
+
Aurora dependencies not installed. Requires PyTorch and aurora-forecast package.
|
| 285 |
+
</p>
|
| 286 |
+
{% endif %}
|
| 287 |
+
</div>
|
| 288 |
+
</div>
|
| 289 |
+
|
| 290 |
<div class="container">
|
| 291 |
<h2>๐ How to Use</h2>
|
| 292 |
<ol style="line-height: 1.8;">
|
test_aurora_fix.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Quick test for Aurora pipeline generator fix
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import sys
|
| 7 |
+
import os
|
| 8 |
+
sys.path.append('.')
|
| 9 |
+
|
| 10 |
+
def test_aurora_fix():
|
| 11 |
+
"""Test the Aurora pipeline generator fix"""
|
| 12 |
+
print("๐งช Testing Aurora Pipeline Generator Fix")
|
| 13 |
+
print("=" * 45)
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
from aurora_pipeline import AuroraPipeline
|
| 17 |
+
print("โ
Aurora pipeline imported successfully")
|
| 18 |
+
|
| 19 |
+
# Initialize pipeline
|
| 20 |
+
pipeline = AuroraPipeline()
|
| 21 |
+
print("โ
Pipeline initialized")
|
| 22 |
+
|
| 23 |
+
# Test with minimal configuration
|
| 24 |
+
date = '2022-10-14'
|
| 25 |
+
steps = 1
|
| 26 |
+
|
| 27 |
+
print(f"\n๐ Running test prediction:")
|
| 28 |
+
print(f" ๐
Date: {date}")
|
| 29 |
+
print(f" ๐ Steps: {steps}")
|
| 30 |
+
|
| 31 |
+
result = pipeline.run_pipeline(date, steps=steps)
|
| 32 |
+
|
| 33 |
+
print("โ
SUCCESS! Aurora pipeline completed without errors")
|
| 34 |
+
|
| 35 |
+
if isinstance(result, dict):
|
| 36 |
+
print(f"๐ Result contains: {list(result.keys())}")
|
| 37 |
+
|
| 38 |
+
# Check if we have expected outputs
|
| 39 |
+
if 'air_pollution' in result:
|
| 40 |
+
pollution_data = result['air_pollution']
|
| 41 |
+
print(f"๐ฌ๏ธ Air pollution predictions: {pollution_data.shape if hasattr(pollution_data, 'shape') else type(pollution_data)}")
|
| 42 |
+
|
| 43 |
+
if 'metadata' in result:
|
| 44 |
+
metadata = result['metadata']
|
| 45 |
+
print(f"๐ Metadata: {metadata}")
|
| 46 |
+
|
| 47 |
+
print("\n๐ Aurora pipeline is now working correctly!")
|
| 48 |
+
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"โ Error during test: {e}")
|
| 51 |
+
import traceback
|
| 52 |
+
print("\n๐ Full traceback:")
|
| 53 |
+
traceback.print_exc()
|
| 54 |
+
|
| 55 |
+
print("\n๐ก Potential solutions:")
|
| 56 |
+
print("1. Check if CAMS data exists for the test date")
|
| 57 |
+
print("2. Verify Aurora model downloaded correctly")
|
| 58 |
+
print("3. Ensure all dependencies are installed")
|
| 59 |
+
|
| 60 |
+
if __name__ == "__main__":
|
| 61 |
+
test_aurora_fix()
|
test_cpu_mode.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
CPU-friendly test for local development without GPU requirements
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
def test_system_readiness():
|
| 7 |
+
"""Test if the basic system is ready for local development"""
|
| 8 |
+
print("๐ฌ Testing System for Local Development")
|
| 9 |
+
print("=" * 50)
|
| 10 |
+
|
| 11 |
+
issues = []
|
| 12 |
+
|
| 13 |
+
# Test 1: Basic Python imports
|
| 14 |
+
try:
|
| 15 |
+
import sys
|
| 16 |
+
print(f"โ
Python version: {sys.version.split()[0]}")
|
| 17 |
+
except Exception as e:
|
| 18 |
+
issues.append(f"Python: {e}")
|
| 19 |
+
|
| 20 |
+
# Test 2: Core dependencies
|
| 21 |
+
try:
|
| 22 |
+
import numpy as np
|
| 23 |
+
print(f"โ
NumPy: {np.__version__}")
|
| 24 |
+
except ImportError:
|
| 25 |
+
issues.append("NumPy not found")
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
import xarray as xr
|
| 29 |
+
print(f"โ
xarray: {xr.__version__}")
|
| 30 |
+
except ImportError:
|
| 31 |
+
issues.append("xarray not found")
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
import matplotlib
|
| 35 |
+
print(f"โ
Matplotlib: {matplotlib.__version__}")
|
| 36 |
+
except ImportError:
|
| 37 |
+
issues.append("Matplotlib not found")
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
import flask
|
| 41 |
+
print(f"โ
Flask: {flask.__version__}")
|
| 42 |
+
except ImportError:
|
| 43 |
+
issues.append("Flask not found")
|
| 44 |
+
|
| 45 |
+
# Test 3: Optional Aurora dependencies
|
| 46 |
+
aurora_ready = True
|
| 47 |
+
try:
|
| 48 |
+
import torch
|
| 49 |
+
print(f"โ
PyTorch: {torch.__version__}")
|
| 50 |
+
print(f" CUDA available: {torch.cuda.is_available()}")
|
| 51 |
+
print(f" CPU cores: {torch.get_num_threads()}")
|
| 52 |
+
except ImportError:
|
| 53 |
+
print("โ ๏ธ PyTorch not found (Aurora unavailable)")
|
| 54 |
+
aurora_ready = False
|
| 55 |
+
|
| 56 |
+
try:
|
| 57 |
+
from huggingface_hub import hf_hub_download
|
| 58 |
+
print("โ
Hugging Face Hub available")
|
| 59 |
+
except ImportError:
|
| 60 |
+
print("โ ๏ธ Hugging Face Hub not found (Aurora unavailable)")
|
| 61 |
+
aurora_ready = False
|
| 62 |
+
|
| 63 |
+
# Test 4: Aurora model
|
| 64 |
+
try:
|
| 65 |
+
from aurora import Batch, Metadata, AuroraAirPollution, rollout
|
| 66 |
+
print("โ
Aurora model available")
|
| 67 |
+
except ImportError:
|
| 68 |
+
print("โ ๏ธ Aurora model not found (predictions unavailable)")
|
| 69 |
+
aurora_ready = False
|
| 70 |
+
|
| 71 |
+
# Test 5: Custom modules
|
| 72 |
+
try:
|
| 73 |
+
from data_processor import NetCDFProcessor
|
| 74 |
+
from plot_generator import IndiaMapPlotter
|
| 75 |
+
from constants import NETCDF_VARIABLES
|
| 76 |
+
print("โ
Custom modules loaded")
|
| 77 |
+
except ImportError as e:
|
| 78 |
+
issues.append(f"Custom modules: {e}")
|
| 79 |
+
|
| 80 |
+
# Test 6: GPU vs CPU detection
|
| 81 |
+
gpu_info = "None"
|
| 82 |
+
try:
|
| 83 |
+
import subprocess
|
| 84 |
+
result = subprocess.run(['nvidia-smi', '--query-gpu=name', '--format=csv,noheader,nounits'],
|
| 85 |
+
capture_output=True, text=True, timeout=5)
|
| 86 |
+
if result.returncode == 0:
|
| 87 |
+
gpu_info = result.stdout.strip()
|
| 88 |
+
print(f"๐ฎ GPU detected: {gpu_info}")
|
| 89 |
+
else:
|
| 90 |
+
print("๐ป No GPU detected (CPU mode)")
|
| 91 |
+
except:
|
| 92 |
+
print("๐ป No GPU utilities found (CPU mode)")
|
| 93 |
+
|
| 94 |
+
print("\n" + "=" * 50)
|
| 95 |
+
print("๐ System Assessment:")
|
| 96 |
+
|
| 97 |
+
if issues:
|
| 98 |
+
print("โ Critical Issues Found:")
|
| 99 |
+
for issue in issues:
|
| 100 |
+
print(f" - {issue}")
|
| 101 |
+
print("\n๐ง Please install missing dependencies")
|
| 102 |
+
else:
|
| 103 |
+
print("โ
Core system ready!")
|
| 104 |
+
|
| 105 |
+
if aurora_ready:
|
| 106 |
+
print("๐ฎ Aurora ML predictions: Available")
|
| 107 |
+
if "CPU mode" in gpu_info or gpu_info == "None":
|
| 108 |
+
print("๐ป Recommended: Use CPU mode with max 2 steps")
|
| 109 |
+
else:
|
| 110 |
+
print("๐ฎ GPU available: Can use more prediction steps")
|
| 111 |
+
else:
|
| 112 |
+
print("โ ๏ธ Aurora ML predictions: Not available")
|
| 113 |
+
print(" Install: torch, huggingface_hub, aurora-forecast")
|
| 114 |
+
|
| 115 |
+
return len(issues) == 0
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
success = test_system_readiness()
|
| 119 |
+
|
| 120 |
+
if success:
|
| 121 |
+
print("\n๐ Ready to run CAMS visualization system!")
|
| 122 |
+
print("๐ก Start with: python app.py")
|
| 123 |
+
else:
|
| 124 |
+
print("\nโ Please resolve issues before running the system")
|