Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from tqdm import tqdm | |
def edit(generator, latents, indices, semantics=1, start_distance=-15.0, end_distance=15.0, num_samples=1, step=11): | |
layers, boundaries, values = factorize_weight(generator, indices) | |
codes = latents.detach().cpu().numpy() # (1,18,512) | |
# Generate visualization pages. | |
distances = np.linspace(start_distance, end_distance, step) | |
num_sam = num_samples | |
num_sem = semantics | |
edited_latents = [] | |
for sem_id in tqdm(range(num_sem), desc='Semantic ', leave=False): | |
boundary = boundaries[sem_id:sem_id + 1] | |
for sam_id in tqdm(range(num_sam), desc='Sample ', leave=False): | |
code = codes[sam_id:sam_id + 1] | |
for col_id, d in enumerate(distances, start=1): | |
temp_code = code.copy() | |
temp_code[:, layers, :] += boundary * d | |
edited_latents.append(torch.from_numpy(temp_code).float().cuda()) | |
return torch.cat(edited_latents) | |
def factorize_weight(g_ema, layers='all'): | |
weights = [] | |
if layers == 'all' or 0 in layers: | |
weight = g_ema.conv1.conv.modulation.weight.T | |
weights.append(weight.cpu().detach().numpy()) | |
if layers == 'all': | |
layers = list(range(g_ema.num_layers - 1)) | |
else: | |
layers = [l - 1 for l in layers if l != 0] | |
for idx in layers: | |
weight = g_ema.convs[idx].conv.modulation.weight.T | |
weights.append(weight.cpu().detach().numpy()) | |
weight = np.concatenate(weights, axis=1).astype(np.float32) | |
weight = weight / np.linalg.norm(weight, axis=0, keepdims=True) | |
eigen_values, eigen_vectors = np.linalg.eig(weight.dot(weight.T)) | |
return layers, eigen_vectors.T, eigen_values | |