Spaces:
Sleeping
Sleeping
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Generate images using pretrained network pickle.""" | |
import math | |
import legacy | |
import clip | |
import dnnlib | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose, Resize, CenterCrop | |
from PIL import Image | |
from torch_utils import misc | |
from torch_utils.ops import upfirdn2d | |
import id_loss | |
from copy import deepcopy | |
def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs): | |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) | |
w_iter = iter(ws.unbind(dim=1)) | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
if fused_modconv is None: | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) | |
# Input. | |
if self.in_channels == 0: | |
x = self.const.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) | |
else: | |
misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if self.in_channels == 0: | |
x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
elif self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) | |
# ToRGB. | |
if img is not None: | |
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) | |
img = upfirdn2d.upsample2d(img, self.resample_filter) | |
if self.is_last or self.architecture == 'skip': | |
y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
def unravel_index(index, shape): | |
out = [] | |
for dim in reversed(shape): | |
out.append(index % dim) | |
index = index // dim | |
return tuple(reversed(out)) | |
def find_direction( | |
GIn, | |
text_prompt: str, | |
truncation_psi: float = 0.7, | |
noise_mode: str = "const", | |
resolution: int = 256, | |
identity_power: float = 0.5, | |
): | |
G = deepcopy(GIn) | |
seeds=np.random.randint(0, 1000, 128) | |
batch_size=1 | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Labels | |
class_idx=None | |
label = torch.zeros([1, G.c_dim], device=device).requires_grad_() | |
if G.c_dim != 0: | |
label[:, class_idx] = 1 | |
model, preprocess = clip.load("ViT-B/32", device=device) | |
text = clip.tokenize([text_prompt]).to(device) | |
text_features = model.encode_text(text) | |
# Generate images | |
for i in G.parameters(): | |
i.requires_grad = True | |
mean = torch.as_tensor((0.48145466, 0.4578275, 0.40821073), dtype=torch.float, device=device) | |
std = torch.as_tensor((0.26862954, 0.26130258, 0.27577711), dtype=torch.float, device=device) | |
if mean.ndim == 1: | |
mean = mean.view(-1, 1, 1) | |
if std.ndim == 1: | |
std = std.view(-1, 1, 1) | |
transf = Compose([Resize(224, interpolation=Image.BICUBIC), CenterCrop(224)]) | |
styles_array = [] | |
for seed_idx, seed in enumerate(seeds): | |
if seed == seeds[-1]: | |
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) | |
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) | |
ws = G.mapping(z, label, truncation_psi=truncation_psi) | |
block_ws = [] | |
with torch.autograd.profiler.record_function('split_ws'): | |
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim]) | |
ws = ws.to(torch.float32) | |
w_idx = 0 | |
for res in G.synthesis.block_resolutions: | |
block = getattr(G.synthesis, f'b{res}') | |
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) | |
w_idx += block.num_conv | |
styles = torch.zeros(1, 26, 512, device=device) | |
styles_idx = 0 | |
temp_shapes = [] | |
for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws): | |
block = getattr(G.synthesis, f'b{res}') | |
if res == 4: | |
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
styles[0, :1, :] = block.conv1.affine(cur_ws[0, :1, :]) | |
styles[0, 1:2, :] = block.torgb.affine(cur_ws[0, 1:2, :]) | |
if seed_idx == (len(seeds) - 1): | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
styles_idx += 2 | |
else: | |
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:]) | |
styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:]) | |
styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:]) | |
if seed_idx == (len(seeds) - 1): | |
block.conv0.affine = torch.nn.Identity() | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
styles_idx += 3 | |
temp_shapes.append(temp_shape) | |
styles = styles.detach() | |
styles_array.append(styles) | |
resolution_dict = {256: 6, 512: 7, 1024: 8} | |
id_coeff = identity_power | |
styles_direction = torch.zeros(1, 26, 512, device=device) | |
styles_direction_grad_el2 = torch.zeros(1, 26, 512, device=device) | |
styles_direction.requires_grad_() | |
global id_loss2 | |
#id_loss = id_loss.IDLoss("a").to(device).eval() | |
id_loss2 = id_loss.IDLoss("a").to(device).eval() | |
temp_photos = [] | |
grads = [] | |
for i in range(math.ceil(len(seeds) / batch_size)): | |
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device) | |
seed = seeds[i] | |
styles_idx = 0 | |
x2 = img2 = None | |
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): | |
block = getattr(G.synthesis, f'b{res}') | |
if k > resolution_dict[resolution]: | |
continue | |
if res == 4: | |
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 2 | |
else: | |
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 3 | |
img2_cpu = img2.detach().cpu().numpy() | |
temp_photos.append(img2_cpu) | |
if i > 3: | |
continue | |
styles2 = styles + styles_direction | |
styles_idx = 0 | |
x = img = None | |
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): | |
block = getattr(G.synthesis, f'b{res}') | |
if k > resolution_dict[resolution]: | |
continue | |
if res == 4: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 2 | |
else: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 3 | |
identity_loss, _ = id_loss2(img, img2) | |
identity_loss *= id_coeff | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) | |
img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std) | |
image_features = model.encode_image(img) | |
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0)) | |
(identity_loss + cos_sim.sum()).backward(retain_graph=True) | |
styles_direction.grad[:, list(range(26)), :] = 0 | |
with torch.no_grad(): | |
styles_direction *= 0 | |
for i in range(math.ceil(len(seeds) / batch_size)): | |
seed = seeds[i] | |
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device) | |
img2 = torch.tensor(temp_photos[i]).to(device) | |
styles2 = styles + styles_direction | |
styles_idx = 0 | |
x = img = None | |
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)): | |
block = getattr(G.synthesis, f'b{res}') | |
if k > resolution_dict[resolution]: | |
continue | |
if res == 4: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 2 | |
else: | |
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 3 | |
identity_loss, _ = id_loss2(img, img2) | |
identity_loss *= id_coeff | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) | |
img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std) | |
image_features = model.encode_image(img) | |
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0)) | |
(identity_loss + cos_sim.sum()).backward(retain_graph=True) | |
styles_direction.grad[:, [0, 1, 4, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], :] = 0 | |
if i % 2 == 1: | |
styles_direction.data = (styles_direction - styles_direction.grad * 5) | |
grads.append(styles_direction.grad.clone()) | |
styles_direction.grad.data.zero_() | |
if i > 3: | |
styles_direction_grad_el2[grads[-2] * grads[-1] < 0] += 1 | |
styles_direction = styles_direction.detach() | |
styles_direction[styles_direction_grad_el2 > (len(seeds) / batch_size) / 4] = 0 | |
return styles_direction.cpu().numpy() | |