Spaces:
Sleeping
Sleeping
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Generate images using pretrained network pickle.""" | |
import os | |
import re | |
from typing import List, Optional | |
import numpy as np | |
import torch | |
from torch_utils import misc | |
from torch_utils import persistence | |
from torch_utils.ops import conv2d_resample | |
from torch_utils.ops import upfirdn2d | |
from torch_utils.ops import bias_act | |
from torch_utils.ops import fma | |
from copy import deepcopy | |
import click | |
import PIL.Image | |
from torch import linalg as LA | |
import torch.nn.functional as F | |
def block_forward(self, x, img, ws, shapes, force_fp32=True, fused_modconv=None, **layer_kwargs): | |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) | |
w_iter = iter(ws.unbind(dim=1)) | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
if fused_modconv is None: | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) | |
# Input. | |
if self.in_channels == 0: | |
x = self.const.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) | |
else: | |
misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if self.in_channels == 0: | |
x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
elif self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) | |
# ToRGB. | |
if img is not None: | |
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) | |
img = upfirdn2d.upsample2d(img, self.resample_filter) | |
if self.is_last or self.architecture == 'skip': | |
y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
def block_forward_from_style(self, x, img, ws, shapes, force_fp32=True, fused_modconv=None, **layer_kwargs): | |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) | |
w_iter = iter(ws.unbind(dim=1)) | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
if fused_modconv is None: | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) | |
# Input. | |
if self.in_channels == 0: | |
x = self.const.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) | |
else: | |
misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if self.in_channels == 0: | |
x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
elif self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) | |
x = y.add_(x) | |
else: | |
x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs) | |
# ToRGB. | |
if img is not None: | |
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) | |
img = upfirdn2d.upsample2d(img, self.resample_filter) | |
if self.is_last or self.architecture == 'skip': | |
y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
def unravel_index(index, shape): | |
out = [] | |
for dim in reversed(shape): | |
out.append(index % dim) | |
index = index // dim | |
return tuple(reversed(out)) | |
def w_to_s( | |
GIn, | |
wsIn:np.ndarray, | |
outdir: str ="s_out", | |
truncation_psi: float = 0.7, | |
noise_mode: str = "const", | |
): | |
G=deepcopy(GIn) | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
os.makedirs(outdir, exist_ok=True) | |
# Generate images. | |
for i in G.parameters(): | |
i.requires_grad = True | |
# ws = np.load(projected_w)['w'] | |
ws = torch.tensor(wsIn, device=device) | |
block_ws = [] | |
with torch.autograd.profiler.record_function('split_ws'): | |
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim]) | |
ws = ws.to(torch.float32) | |
w_idx = 0 | |
for res in G.synthesis.block_resolutions: | |
block = getattr(G.synthesis, f'b{res}') | |
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) | |
w_idx += block.num_conv | |
styles = torch.zeros(1,26,512, device=device) | |
styles_idx = 0 | |
temp_shapes = [] | |
for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws): | |
block = getattr(G.synthesis, f'b{res}') | |
if res == 4: | |
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
styles[0,:1,:] = block.conv1.affine(cur_ws[0,:1,:]) | |
styles[0,1:2,:] = block.torgb.affine(cur_ws[0,1:2,:]) | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
styles_idx += 2 | |
else: | |
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:]) | |
styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:]) | |
styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:]) | |
block.conv0.affine = torch.nn.Identity() | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
styles_idx += 3 | |
temp_shapes.append(temp_shape) | |
styles = styles.detach() | |
np.savez(f'{outdir}/input.npz', s=styles.cpu().numpy()) | |
return styles.cpu().numpy() | |
def generate_from_style( | |
GIn, | |
styles: np.ndarray, | |
styles_direction: np.ndarray, | |
outdir: str, | |
change_power: int, | |
truncation_psi: float = 0.7, | |
noise_mode: str = "const", | |
): | |
G=deepcopy(GIn) | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
os.makedirs(outdir, exist_ok=True) | |
# Generate images | |
for i in G.parameters(): | |
i.requires_grad = False | |
temp_shapes = [] | |
for res in G.synthesis.block_resolutions: | |
block = getattr(G.synthesis, f'b{res}') | |
if res == 4: | |
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
else: | |
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0]) | |
block.conv0.affine = torch.nn.Identity() | |
block.conv1.affine = torch.nn.Identity() | |
block.torgb.affine = torch.nn.Identity() | |
temp_shapes.append(temp_shape) | |
styles_direction = torch.tensor(styles_direction, device=device) | |
styles = torch.tensor(styles, device=device) | |
with torch.no_grad(): | |
imgs = [] | |
grad_changes = [change_power] | |
for grad_change in grad_changes: | |
styles += styles_direction*grad_change | |
styles_idx = 0 | |
x = img = None | |
for k , res in enumerate(G.synthesis.block_resolutions): | |
block = getattr(G.synthesis, f'b{res}') | |
if res == 4: | |
x, img = block_forward_from_style(block, x, img, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 2 | |
else: | |
x, img = block_forward_from_style(block, x, img, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True) | |
styles_idx += 3 | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255) | |
imgs.append(img[0].to(torch.uint8).cpu().numpy()) | |
styles -= styles_direction*grad_change | |
output_image = PIL.Image.fromarray(np.concatenate(imgs, axis=1), 'RGB') | |
output_image.save(os.path.join(outdir, 'final_out.png'), quality=95) | |
return output_image | |