Spaces:
Sleeping
Sleeping
from abc import abstractmethod | |
import torchvision.transforms as transforms | |
class TransformsConfig(object): | |
def __init__(self, opts): | |
self.opts = opts | |
def get_transforms(self): | |
pass | |
class EncodeTransforms(TransformsConfig): | |
def __init__(self, opts): | |
super(EncodeTransforms, self).__init__(opts) | |
def get_transforms(self): | |
transforms_dict = { | |
'transform_gt_train': transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.RandomHorizontalFlip(0.5), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]), | |
'transform_source': None, | |
'transform_test': transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]), | |
'transform_inference': transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) | |
} | |
return transforms_dict | |
class CarsEncodeTransforms(TransformsConfig): | |
def __init__(self, opts): | |
super(CarsEncodeTransforms, self).__init__(opts) | |
def get_transforms(self): | |
transforms_dict = { | |
'transform_gt_train': transforms.Compose([ | |
transforms.Resize((192, 256)), | |
transforms.RandomHorizontalFlip(0.5), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]), | |
'transform_source': None, | |
'transform_test': transforms.Compose([ | |
transforms.Resize((192, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]), | |
'transform_inference': transforms.Compose([ | |
transforms.Resize((192, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) | |
} | |
return transforms_dict | |