Spaces:
Build error
Build error
# https://github.com/tensorflow/models/blob/master/official/vision/beta/modeling/classification_model.py | |
"""Build classification models.""" | |
from typing import Any, Mapping, Optional, Union | |
# Import libraries | |
import tensorflow as tf | |
import re | |
class ClassificationModel(tf.keras.Model): | |
"""A classification class builder.""" | |
def __init__( | |
self, | |
backbone: tf.keras.Model, | |
num_classes: int, | |
input_specs: tf.keras.layers.InputSpec = tf.keras.layers.InputSpec(shape=[None, None, None, 3]), | |
dropout_rate: float = 0.0, | |
kernel_initializer: Union[str, tf.keras.initializers.Initializer] = 'random_uniform', | |
skip_logits_layer: bool = False, | |
weight_decay: float = 0.0, | |
clip_grad_norm: float = 0.0, | |
**kwargs): | |
"""Classification initialization function. | |
Args: | |
backbone: a backbone network. | |
num_classes: `int` number of classes in classification task. | |
input_specs: `tf.keras.layers.InputSpec` specs of the input tensor. | |
dropout_rate: `float` rate for dropout regularization. | |
kernel_initializer: kernel initializer for the dense layer. | |
kernel_regularizer: tf.keras.regularizers.Regularizer object. Default to | |
None. | |
bias_regularizer: tf.keras.regularizers.Regularizer object. Default to | |
None. | |
skip_logits_layer: `bool`, whether to skip the prediction layer. | |
**kwargs: keyword arguments to be passed. | |
""" | |
inputs = tf.keras.Input(shape=input_specs.shape[1:], name=input_specs.name) | |
outputs = backbone(inputs) | |
outputs = tf.keras.layers.GlobalAveragePooling2D()(outputs) | |
if not skip_logits_layer: | |
if dropout_rate is not None and dropout_rate > 0: | |
outputs = tf.keras.layers.Dropout(dropout_rate)(outputs) | |
outputs = tf.keras.layers.Dense( | |
num_classes, | |
kernel_initializer=kernel_initializer, | |
bias_initializer=tf.keras.initializers.Constant(value=-10.0))(outputs) | |
super(ClassificationModel, self).__init__(inputs=inputs, outputs=outputs, **kwargs) | |
self._config_dict = { | |
'backbone': backbone, | |
'num_classes': num_classes, | |
'input_specs': input_specs, | |
'dropout_rate': dropout_rate, | |
'kernel_initializer': kernel_initializer, | |
'weight_decay': weight_decay, | |
'clip_grad_norm': clip_grad_norm, | |
} | |
self._input_specs = input_specs | |
self._backbone = backbone | |
self._weight_decay = weight_decay | |
self._clip_grad_norm = clip_grad_norm | |
def _reg_l2_loss(self, weight_decay, regex=r'.*(kernel|weight):0$'): | |
"""Return regularization l2 loss loss.""" | |
var_match = re.compile(regex) | |
return weight_decay * tf.add_n([ | |
tf.nn.l2_loss(v) | |
for v in self.trainable_variables | |
if var_match.match(v.name) | |
]) | |
def train_step(self, data): | |
features, labels = data | |
images, labels = features['image'], labels['label'] | |
with tf.GradientTape() as tape: | |
pred = self(images, training=True) | |
pred = tf.cast(pred, tf.float32) | |
loss = self.compiled_loss( | |
labels, | |
pred, | |
regularization_losses=[self._reg_l2_loss(self._weight_decay)]) | |
self.optimizer.minimize(loss, self.trainable_variables, tape=tape) | |
self.compiled_metrics.update_state(labels, pred) | |
return {m.name: m.result() for m in self.metrics} | |
def test_step(self, data): | |
features, labels = data | |
images, labels = features['image'], labels['label'] | |
pred = self(images, training=False) | |
pred = tf.cast(pred, tf.float32) | |
self.compiled_loss( | |
labels, | |
pred, | |
regularization_losses=[self._reg_l2_loss(self._weight_decay)]) | |
self.compiled_metrics.update_state(labels, pred) | |
return {m.name: m.result() for m in self.metrics} | |
def checkpoint_items(self) -> Mapping[str, tf.keras.Model]: | |
"""Returns a dictionary of items to be additionally checkpointed.""" | |
return dict(backbone=self.backbone) | |
def backbone(self) -> tf.keras.Model: | |
return self._backbone | |
def get_config(self) -> Mapping[str, Any]: | |
return self._config_dict | |
def from_config(cls, config, custom_objects=None): | |
return cls(**config) |