Spaces:
Sleeping
Sleeping
adinarayana
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,79 +7,41 @@ from transformers import pipeline, TFBertForQuestionAnswering, AutoTokenizer
|
|
7 |
import tensorflow as tf
|
8 |
import streamlit as st
|
9 |
|
10 |
-
|
11 |
def preprocess_text(element):
|
12 |
-
"""Preprocesses text elements from the PDF.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
element: A PDFminer text element.
|
16 |
-
|
17 |
-
Returns:
|
18 |
-
The preprocessed text.
|
19 |
-
"""
|
20 |
if isinstance(element, pdfminer.layout.LTTextBoxHorizontal):
|
21 |
text = element.get_text().strip()
|
22 |
# Remove non-textual elements
|
23 |
-
text = re.sub(r'[^\w\s]', '', text)
|
24 |
-
|
25 |
-
# Remove stop words (optional)
|
26 |
-
# from nltk.corpus import stopwords
|
27 |
-
# stop_words = set(stopwords.words('english'))
|
28 |
-
# text = " ".join([word for word in text.split() if word not in stop_words])
|
29 |
-
|
30 |
-
# Convert to lowercase (optional)
|
31 |
text = text.lower()
|
32 |
return text
|
33 |
else:
|
34 |
return ""
|
35 |
|
36 |
-
|
37 |
def answer_question(text, question, max_length=512):
|
38 |
-
"""Answers a question using the provided text and a pre-trained model.
|
39 |
-
|
40 |
-
Args:
|
41 |
-
text: The preprocessed text from the PDF.
|
42 |
-
question: The user's question.
|
43 |
-
|
44 |
-
Returns:
|
45 |
-
The answer extracted from the text using the model.
|
46 |
-
"""
|
47 |
-
|
48 |
-
qa_model_name = "bert-base-uncased" # Replace with your model
|
49 |
-
|
50 |
qa_model = TFBertForQuestionAnswering.from_pretrained(qa_model_name)
|
51 |
tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
text = text[:max_length]
|
56 |
-
|
57 |
-
# Add special tokens and tokenize:
|
58 |
-
inputs = tokenizer(
|
59 |
-
question, text, return_tensors="tf", padding="max_length", truncation=True
|
60 |
-
)
|
61 |
|
|
|
62 |
outputs = qa_model(inputs)
|
63 |
-
|
64 |
start_logits = outputs.start_logits
|
65 |
end_logits = outputs.end_logits
|
66 |
|
67 |
-
# Ensure start_logits and end_logits are tensors
|
68 |
-
start_logits = tf.convert_to_tensor(start_logits)
|
69 |
-
end_logits = tf.convert_to_tensor(end_logits)
|
70 |
-
|
71 |
# Find the indices of the start and end positions
|
72 |
answer_start = tf.argmax(start_logits, axis=1).numpy()[0]
|
73 |
-
answer_end = (tf.argmax(end_logits, axis=1) + 1).numpy()[0]
|
74 |
|
75 |
# Extract the answer text from the original text
|
76 |
-
answer =
|
77 |
-
|
78 |
return answer if answer else "No answer found."
|
79 |
|
80 |
-
|
81 |
-
## Streamlit app
|
82 |
-
|
83 |
st.set_page_config(page_title="PDF Summarizer and Q&A")
|
84 |
st.header("PDF Summarizer and Q&A")
|
85 |
|
@@ -101,9 +63,7 @@ if uploaded_file is not None:
|
|
101 |
summarize_button = st.button("Generate Summary")
|
102 |
if summarize_button:
|
103 |
with st.spinner("Summarizing..."):
|
104 |
-
|
105 |
-
truncated_text = text[:max_input_length] # Truncate the text
|
106 |
-
summary_response = pipeline("summarization", model=summarization_model)(truncated_text, min_length=min_summary_length)
|
107 |
st.subheader("Summary")
|
108 |
st.write(summary_response[0]["summary_text"])
|
109 |
if question:
|
@@ -113,4 +73,3 @@ if uploaded_file is not None:
|
|
113 |
st.write(answer)
|
114 |
else:
|
115 |
st.error("No text found in the PDF.")
|
116 |
-
|
|
|
7 |
import tensorflow as tf
|
8 |
import streamlit as st
|
9 |
|
|
|
10 |
def preprocess_text(element):
|
11 |
+
"""Preprocesses text elements from the PDF."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
if isinstance(element, pdfminer.layout.LTTextBoxHorizontal):
|
13 |
text = element.get_text().strip()
|
14 |
# Remove non-textual elements
|
15 |
+
text = re.sub(r'[^\w\s]', '', text)
|
16 |
+
# Convert to lowercase
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
text = text.lower()
|
18 |
return text
|
19 |
else:
|
20 |
return ""
|
21 |
|
|
|
22 |
def answer_question(text, question, max_length=512):
|
23 |
+
"""Answers a question using the provided text and a pre-trained model."""
|
24 |
+
qa_model_name = "bert-large-uncased-whole-word-masking-finetuned-squad"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
qa_model = TFBertForQuestionAnswering.from_pretrained(qa_model_name)
|
26 |
tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
27 |
|
28 |
+
# Add special tokens and tokenize
|
29 |
+
inputs = tokenizer(question, text, return_tensors="tf", padding=True, truncation=True, max_length=max_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Model prediction
|
32 |
outputs = qa_model(inputs)
|
|
|
33 |
start_logits = outputs.start_logits
|
34 |
end_logits = outputs.end_logits
|
35 |
|
|
|
|
|
|
|
|
|
36 |
# Find the indices of the start and end positions
|
37 |
answer_start = tf.argmax(start_logits, axis=1).numpy()[0]
|
38 |
+
answer_end = (tf.argmax(end_logits, axis=1) + 1).numpy()[0]
|
39 |
|
40 |
# Extract the answer text from the original text
|
41 |
+
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))
|
|
|
42 |
return answer if answer else "No answer found."
|
43 |
|
44 |
+
# Streamlit app
|
|
|
|
|
45 |
st.set_page_config(page_title="PDF Summarizer and Q&A")
|
46 |
st.header("PDF Summarizer and Q&A")
|
47 |
|
|
|
63 |
summarize_button = st.button("Generate Summary")
|
64 |
if summarize_button:
|
65 |
with st.spinner("Summarizing..."):
|
66 |
+
summary_response = pipeline("summarization", model=summarization_model)(text, min_length=min_summary_length)
|
|
|
|
|
67 |
st.subheader("Summary")
|
68 |
st.write(summary_response[0]["summary_text"])
|
69 |
if question:
|
|
|
73 |
st.write(answer)
|
74 |
else:
|
75 |
st.error("No text found in the PDF.")
|
|