adil22jaleel commited on
Commit
fbe59dd
1 Parent(s): 5538b11

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +182 -0
  2. input.txt +0 -0
  3. nano-gpt.pth +3 -0
  4. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import functional as F
4
+ import numpy as np
5
+ import random
6
+ import re
7
+ import gradio as gr
8
+
9
+ # hyperparameters
10
+ batch_size = 16 # how many independent sequences will we process in parallel?
11
+ block_size = 32 # what is the maximum context length for predictions?
12
+ max_iters = 5000
13
+ eval_interval = 100
14
+ learning_rate = 1e-3
15
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
16
+ eval_iters = 200
17
+ n_embd = 64
18
+ n_head = 4
19
+ n_layer = 4
20
+ dropout = 0.0
21
+ # ------------
22
+
23
+ torch.manual_seed(1337)
24
+
25
+ class Head(nn.Module):
26
+ """ one head of self-attention """
27
+
28
+ def __init__(self, head_size):
29
+ super().__init__()
30
+ self.key = nn.Linear(n_embd, head_size, bias=False)
31
+ self.query = nn.Linear(n_embd, head_size, bias=False)
32
+ self.value = nn.Linear(n_embd, head_size, bias=False)
33
+ self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
34
+
35
+ self.dropout = nn.Dropout(dropout)
36
+
37
+ def forward(self, x):
38
+ B,T,C = x.shape
39
+ k = self.key(x) # (B,T,C)
40
+ q = self.query(x) # (B,T,C)
41
+ # compute attention scores ("affinities")
42
+ wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
43
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
44
+ wei = F.softmax(wei, dim=-1) # (B, T, T)
45
+ wei = self.dropout(wei)
46
+ # perform the weighted aggregation of the values
47
+ v = self.value(x) # (B,T,C)
48
+ out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
49
+ return out
50
+
51
+ class MultiHeadAttention(nn.Module):
52
+ """ multiple heads of self-attention in parallel """
53
+
54
+ def __init__(self, num_heads, head_size):
55
+ super().__init__()
56
+ self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
57
+ self.proj = nn.Linear(n_embd, n_embd)
58
+ self.dropout = nn.Dropout(dropout)
59
+
60
+ def forward(self, x):
61
+ out = torch.cat([h(x) for h in self.heads], dim=-1)
62
+ out = self.dropout(self.proj(out))
63
+ return out
64
+
65
+ class FeedFoward(nn.Module):
66
+ """ a simple linear layer followed by a non-linearity """
67
+
68
+ def __init__(self, n_embd):
69
+ super().__init__()
70
+ self.net = nn.Sequential(
71
+ nn.Linear(n_embd, 4 * n_embd),
72
+ nn.ReLU(),
73
+ nn.Linear(4 * n_embd, n_embd),
74
+ nn.Dropout(dropout),
75
+ )
76
+
77
+ def forward(self, x):
78
+ return self.net(x)
79
+
80
+ class Block(nn.Module):
81
+ """ Transformer block: communication followed by computation """
82
+
83
+ def __init__(self, n_embd, n_head):
84
+ # n_embd: embedding dimension, n_head: the number of heads we'd like
85
+ super().__init__()
86
+ head_size = n_embd // n_head
87
+ self.sa = MultiHeadAttention(n_head, head_size)
88
+ self.ffwd = FeedFoward(n_embd)
89
+ self.ln1 = nn.LayerNorm(n_embd)
90
+ self.ln2 = nn.LayerNorm(n_embd)
91
+
92
+ def forward(self, x):
93
+ x = x + self.sa(self.ln1(x))
94
+ x = x + self.ffwd(self.ln2(x))
95
+ return x
96
+
97
+ # super simple bigram model
98
+ class BigramLanguageModel(nn.Module):
99
+ def __init__(self, dataset_text, n_embd):
100
+ super().__init__()
101
+
102
+ # Compute character-related parameters
103
+ self.chars = sorted(list(set(dataset_text)))
104
+ self.vocab_size = len(self.chars)
105
+ self.stoi = {ch: i for i, ch in enumerate(self.chars)}
106
+ self.itos = {i: ch for ch, i in self.stoi.items()}
107
+
108
+ self.token_embedding_table = nn.Embedding(self.vocab_size, n_embd)
109
+ self.position_embedding_table = nn.Embedding(block_size, n_embd)
110
+ self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
111
+ self.ln_f = nn.LayerNorm(n_embd)
112
+ self.lm_head = nn.Linear(n_embd, self.vocab_size)
113
+ self.encode = lambda s: [self.stoi[c] for c in s] # encoder: take a string, output a list of integers
114
+ self.decode = lambda l: ''.join([self.itos[i] for i in l]) # decoder: take a list of integers, output a string
115
+
116
+
117
+ def forward(self, idx, targets=None):
118
+ B, T = idx.shape
119
+
120
+ # idx and targets are both (B,T) tensor of integers
121
+ tok_emb = self.token_embedding_table(idx) # (B,T,C)
122
+ pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
123
+ x = tok_emb + pos_emb # (B,T,C)
124
+ x = self.blocks(x) # (B,T,C)
125
+ x = self.ln_f(x) # (B,T,C)
126
+ logits = self.lm_head(x) # (B,T,vocab_size)
127
+
128
+ if targets is None:
129
+ loss = None
130
+ else:
131
+ B, T, C = logits.shape
132
+ logits = logits.view(B*T, C)
133
+ targets = targets.view(B*T)
134
+ loss = F.cross_entropy(logits, targets)
135
+
136
+ return logits, loss
137
+
138
+ def generate(self, idx, max_new_tokens):
139
+ # idx is (B, T) array of indices in the current context
140
+ for _ in range(max_new_tokens):
141
+ # crop idx to the last block_size tokens
142
+ idx_cond = idx[:, -block_size:]
143
+ # get the predictions
144
+ logits, loss = self(idx_cond)
145
+ # focus only on the last time step
146
+ logits = logits[:, -1, :] # becomes (B, C)
147
+ # apply softmax to get probabilities
148
+ probs = F.softmax(logits, dim=-1) # (B, C)
149
+ # sample from the distribution
150
+ idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
151
+ # append sampled index to the running sequence
152
+ idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
153
+ return idx
154
+
155
+ # Reading shakespeare data
156
+ with open('input.txt', 'r', encoding='utf-8') as f:
157
+ shakespeare_text = f.read()
158
+
159
+ # Load the shakespeaere model
160
+ shakespeare_model = BigramLanguageModel(shakespeare_text, n_embd).to(device) # Initialize an instance of your model
161
+ shakespeare_model.load_state_dict(torch.load('shakespeaere_language_model.pth', map_location=torch.device('cpu')))
162
+ shakespeare_model.eval() # Set the model to evaluation mode
163
+
164
+
165
+ def generate_shakespeare_outputs(prompt=None, max_new_tokens=2000):
166
+ if prompt:
167
+ context = torch.tensor(shakespeare_model.encode(prompt), dtype=torch.long, device=device).view(1, -1)
168
+ else:
169
+ context = torch.zeros((1, 1), dtype=torch.long, device=device)
170
+ text_output = shakespeare_model.decode(shakespeare_model.generate(context, max_new_tokens=max_new_tokens)[0].tolist())
171
+ return text_output
172
+
173
+ title = "Nano GPT using Shakespeare Data"
174
+
175
+ description1 = "Nano GPT trained on <a href='https://www.kaggle.com/datasets/mikeortman/wikipedia-sentences'>Shakespeare dataset</a>. It is trained on a very small amount of data to understand how GPT's are trained and built. The implementation can be found <a href='https://github.com/karpathy/nanoGPT'>here.</a>"
176
+
177
+ demo = gr.Interface(generate_shakespeare_outputs,
178
+ inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
179
+ gr.Slider(minimum=100, maximum=5000, step=100, value=2000, label="Max new tokens")],
180
+ outputs=gr.Textbox(label="Output generated", type="text"), description=description1)
181
+
182
+ demo.launch()
input.txt ADDED
The diff for this file is too large to render. See raw diff
 
nano-gpt.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:129463e9593a0774dcb23ad679d4e31bb381e47c508f37ff782cb10f0c32b48e
3
+ size 945416
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ gradio